Silicon-on-insulator (SOI) has been used as a platform for nearinfrared photonic devices for more than twenty years. Longer wavelengths, however, may be problematic for SOI due to higher absorption loss in silicon dioxide. In this paper we report propagation loss measurements for the longest wavelength used so far on SOI platform. We show that propagation losses of 0.6-0.7 dB/cm can be achieved at a wavelength of 3.39 µm. We also report propagation loss measurements for silicon on porous silicon (SiPSi) waveguides at the same wavelength.
We have successfully fabricated low-loss silicon-on-oxidized-porous-silicon (SOPS) strip waveguides with high-index contrast using focused proton-beam irradiation and electrochemical etching. Smooth surface quality with rms roughness of 3.1 nm is achieved for a fluence of 1 ϫ 10 15 /cm 2 after postoxidation treatment. Optical characterization at a wavelength of 1550 nm shows a loss of 1.1± 0.4 dB/ cm and 1.2± 0.4 dB/ cm in TE and TM polarization respectively, which we believe is the lowest reported loss for SOPS waveguides. This opens up new opportunities for all-silicon-based optoelectronics applications.
We have studied the effect of oxidation on the propagation loss and surface roughness of silicon-on-oxidized-porous-silicon strip waveguides fabricated using proton-beam irradiation and electrochemical etching. A thin thermal oxide is formed around the core of the waveguide, enabling the symmetric reduction of core size and roughness on all sides. Significant loss reduction from about 10 dB/cm to 1 dB/cm has been obtained in TE and TM polarizations after oxidation smoothening of both the bottom and the sidewalls by 20 nm. This corresponds well with simulations using the beam-propagation method that show significant contributions from both surfaces.
In this paper, we demonstrate a direct method of fabricating an all-silicon, single-mode Bragg cladding rib waveguide using proton beam irradiation and subsequent electrochemical etching. The Bragg waveguide consists of porous silicon layers with a low index core of 1.4 that is bounded by eight bilayers of alternating high and low refractive index of 1.4 and 2.4. Here, the ion irradiation acts to reduce the thickness of porous silicon formed, creating an optical barrier needed for lateral confinement. Single-mode guiding with losses as low as approximately 1 dB/cm were obtained for both TE and TM polarization over a broad range of wavelengths from 1525 nm to 1625 nm. Such an approach offers a method for monolithic integration of Bragg waveguides in silicon, without the need for multiple processes of depositing alternating materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.