In this study, we introduce what we believe is a novel holographic optical element called a chiral square Fresnel zone plate (CSFZP). The chirality is imposed on a square Fresnel zone plate (SFZP) using a nonclassical technique by rotating the half-period zones relative to one another. The rotation of the half-period zones, in turn, twists the side lobes of the diffraction pattern without altering the focusing properties inherent to a SFZP. As a consequence, the beam profile is hybrid, consisting of a strong central Gaussian focal spot with gradient force similar to that generated by a lens and twisted side lobes with orbital angular momentum. The optical fields at the focal plane were calculated and found to possess a whirlpool-phase profile and a twisted intensity profile. Analysis of the field variation along the direction of propagation revealed a spiraling phase and amplitude distribution. Poynting vector plot of the fields revealed the presence of angular momentum in the regions of chiral side lobes. The phase of the CSFZPs were displayed on a phase-only reflective spatial light modulator and illuminated using a laser. The intensity patterns recorded in the experiment match the calculated ones, with a strong central focal spot and twisted side lobes. The beam pattern was implemented in an optical trapping experiment and was found to possess particle trapping capabilities.
Numerical simulations of laminar pipe and channel flows were carried out: (i) to understand the effect of inlet conditions, viz., flat inlet and streamtube inlet, on entry lengths, and (ii) to investigate the flow development in radial/transverse locations. Results show that hydrodynamic entry lengths from the streamtube inlet simulations are significantly lower compared to the entry lengths from the flat inlet simulations for low Reynolds numbers. Moreover, results from the current study (Newtonian flow with no-slip) as well as the results from the literature (non-Newtonian flow with no-slip) showed that for many flow situations, the slowest development of axial velocity in the transverse location happens to be very near to the wall. For the above cases, the existing entry length criteria (centerline as well as global entry length) are not appropriate to define the entry length. We have proposed a new entry length criterion based on the displacement thickness which is an integral measure of the velocity profile. A new entry length correlation using the displacement thickness criterion is proposed for Newtonian flows in pipe and channel based on simulations with the streamtube inlet condition.
Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel ‘UFO’ (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.
The behaviour of low Reynolds number, non-Boussinesq fountains from four different nozzle geometries (one circular and three rectangular nozzles) are studied. High speed laser schlieren imaging is used to study the fountain behaviour (frequency and penetration height). Bi-orthogonal decomposition and dynamic mode decomposition (DMD) are used to understand the unsteady characteristics of fountains. The flow regimes of fountains are classified as steady, flapping, and flapping-bobbing type. The DMD technique successfully separates the bobbing oscillation from the combined flapping-bobbing oscillation of the fountain. The frequency of the flapping oscillation, and the frequency of the bobbing oscillation in the flapping-bobbing regime scales as SthFrh = C1 and \documentclass[12pt]{minimal}\begin{document}$St_h Fr_h^2 = C_2$\end{document}SthFrh2=C2, respectively, where the characteristic length scale is the smallest dimension (h) of the nozzle. The mean steady state penetration heights (Zs/h) of “forced” low Reynolds number non-Boussinesq fountains are independent of nozzle shape (circular and rectangular), and scales linearly with the Froude number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.