This paper proposes a coded aperture structured illumination (CASI) technique in digital holographic microscopy (DHM). A CASI wave is generated using two binary phase codes (0° and 120°) for spatial phase shifting. The generated CASI wave then interferes with a reference wave to form a coded Fresnel hologram at a single exposure with compressive sensing (CS) to avoid the temporal phase-shifting process of the structured illumination (SI). The CS algorithm is applied to retrieve the missing data of decoded phase-shifted SI-modulated waves, which are used to separate overlapped spatial frequencies for obtaining a larger spatial frequency coverage to provide superresolution imaging. Two phase-only spatial light modulators are applied to generate a directional SI pattern for obtaining a coded aperture with a suitable size to perform one-shot acquisition in the DHM system.
Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel ‘UFO’ (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.
This study describes the overlapping of spatial frequency bands for synthetic aperture in digital holography using spectrum normalization to effectively enhance the spatial resolutions of image reconstruction. Synthesized spectrum swelling induced by excessive frequency overlaps can be normalized through the inverse apodization of an adjustable window function, which is similar to the effects of suppressing low-frequency expansion and strengthening high-frequency components of the reconstructed images. The results indicated that using the normalized spectrum synthesis that requires only a few frequency bands effectively enhances the spatial resolution and phase sensitivity of reconstructed images in digital holographic microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.