<p>It is widely accepted that electrochemical batteries ensure superior energy storage and reliability of power supply. This paper proposes to discuss the dynamic performance of the Lead Acid Storage battery and to develop an Electrical Equivalent circuit and study its response to sudden changes in the output. A detailed explanation of the discharging process for lead-acid storage batteries and the factors affecting the rate of chemical reactions is provided. The objective of the study is to find the reduction in terminal voltage due to the change in reaction rate and to evolve a simple dynamic model for discharge of the battery.</p>
Maximum power point tracking (MPPT) of a photo voltaic system with different temperature and insolation conditions used for Micro grids can be explained in this paper. The different steps of the design of this controller are presented together with its simulation and the feasibility of control methods to be adopted for the operation of a micro grid when it becomes isolated. Normally, the micro grid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the micro grid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load to take off strategies is included in this paper. Solar photovoltaic (PV) energy has witnessed double-digit growth in the past decade. The penetration of PV systems as distributed generators in low-voltage grids has also seen significant attention. In addition, the need for higher overall grid efficiency and reliability has boosted the interest in the microgrid concept. High-efficiency PV-based microgrids require maximum power point tracking (MPPT) controllers to maximize the harvested energy due to the nonlinearity in PV module characteristics. This paper proposes an approach of coordinated and integrated control of solar PV generators with the maximum power point tracking (MPPT) control and battery storage control to provide voltage and frequency (V-f) support to an islanded microgrid. The simulation studies are carried out with the IEEE 13-bus feeder test system in grid connected and islanded microgrid modes. The MPPT of a Photovoltaic System for Micro Grid operation is successfully designed and simulated by using MATLAB/Simulink Software in this paper.
The fast and accurate modeling topologies are very much essential for power train electrification. The importance of thermal effect is very important in any electrochemical systems and must be considered in battery models because temperature factor has highest importance in transport phenomena and chemical kinetics. The dynamic performance of the lithium ion battery is discussed here and a suitable electrical equivalent circuit is developed to study its response for sudden changes in the output. An effective lithium cell simulation model with thermal dependence is presented in this paper. One series resistor, one voltage source and a single RC block form the proposed equivalent circuit model. The 1 RC and 2 RC Lithium ion battery models are commonly used in the literature are studied and compared. The simulation of Lithium-ion battery 1RC and 2 RC Models are performed by using Matlab/Simulink Software. The simulation results in his paper shows that Lithium-ion battery 1 RC model has more maximum output error of 0.42% than 2 RC Lithium-ion battery model in constant current condition and the maximum output error of 1 RC Lithium-ion battery model is 0.18% more than 2 RC Lithium-ion battery model in UDDS Cycle condition. The simulation results also show that in both simple and complex discharging modes, the error in output is much improved in 2 RC lithium ion battery model when compared to 1 RC Lithium-ion battery model. Thus the paper shows for general applications like in portable electronic design like laptops, Lithium-ion battery 1 RC model is the preferred choice and for automotive and space design applications, Lithium-ion 2 RC model is the preferred choice. In this paper, these simulation results for 1 RC and 2 RC Lithium-ion battery models will be very much useful in the application of practical Lithium-ion battery management systems for electric vehicle applications.
The battery energy storage systems are very essential for maintaining constant power supply when using solar photovoltaic systems for power generation. The viability and ability of battery energy storage systems are assessed based on battery usage in Solar Photovoltaic utility grid-connected systems. The power supply quality and reliability are improved by utilizing battery energy storage technologies in conjunction with solar photovoltaic systems. This paper presents a comparative analysis of Lead-Acid Storage battery and Lithium-ion battery banks connected to a utility grid. The battery mathematical model simulation study gives their performance characteristics of these batteries under grid-connected loads. Cost-benefit analysis of battery usage for determining the best battery suitable for solar photovoltaic system applications is also presented in this paper.
<p>This paper explains about an intelligent control method for the maximum power point tracking (MPPT) of a photo voltaic system with different temperature and insolation conditions. This method uses a fuzzy logic controller applied to a DC-DC converter. The different steps of the design of this controller are presented together with its simulation and the feasibility of control methods to be adopted for the operation of a micro grid when it becomes isolated. Normally, the micro grid operates in interconnected mode with the medium voltage network; however, scheduled or forced isolation can take place. In such conditions, the micro grid must have the ability to operate stably and autonomously. An evaluation of the need of storage devices and load to take off strategies is included in this paper. The MPPT of a photovoltaic system for Micro Grid operaion using a Fuzzy logic control scheme is successfully designed and simulated by using MATLAB/Simulink Software.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.