The present paper proposes a novel algorithm for recognition of handwritten digits. For this, the present paper classified the digits into two groups: one group consists of blobs with/without stems and the other digits with stems only. The blobs are identified based on a new concept called morphological region filling methods. This eliminates the problem of finding the size of blobs and their structuring elements. The digits with blobs and stems are identified by a new concept called 'connected component'. This method completely eliminates the complex process of recognition of horizontal or vertical lines and the property called 'concavities'. The digits with only stems are recognized, by extending stems into blobs by using connected component approach of morphology. The present method has been applied and tested with various handwritten digits from modified NIST (National Institute of Standards and Technology) handwritten digit database (MNIST), and the success rate has been given. The present method is also compared with various existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.