Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated.
The aim of this study was to assess changes of Hsp70 and HSF-1 protein and mRNA expression in stress-sensitive organs of pigs during transportation for various periods of time. Twenty pigs were randomly divided into four groups (0 h, 1 h, 2 h, and 4 h of transportation). A significant increased activity of AST and CK was observed after 1 h and 2 h of transportation. Histopathological changes in the heart, liver, and stomach indicated that these organs sustained different degrees of injury. Hsp70 protein expression in the heart and liver of transported pigs did not change significantly while it increased significantly (p < 0.05) in the stomach. Hsp70 mRNA levels decreased significantly (p < 0.05) in the heart after 4 h of transportation. However, mRNA expression increased significantly in the liver after 1 (p < 0.05) and 4 h (p < 0.01) of transportation, and increased significantly in the stomach of the transported pigs after 1, 4 (p < 0.01), and 2 h (p < 0.05). HSF-1 levels were reduced at 1 and 4 h (p < 0.05) only in the hearts of transported pigs. These results indicate that Hsp70 mediates distinct stress-related functions in different tissues during transportation.
ABSTRACT. To understand the mechanism underlying the sudden animal death caused by acute heart failure during heat stress, the relationships among the heat-induced pathological changes and apoptosis and the variations in the levels of protective Hsp90α and its mRNA in the heat-stressed primary myocardial cells of neonatal rats in vitro were studied by cytopathological observation, immunoblotting, RT-PCR, and analysis of the related enzymes. After a period of adaptive cell culture, the myocardial cells were immediately exposed to heat stress at 42°C for 10, 20, 40, 60, 120, 240, 360, and 480 min. Levels of creatine kinase increased from the beginning of heat stress, and the cells exposed to heat stress showed acute cellular Hsp90α, heat stress and myocardial cells lesions characterized by vacuolar degeneration and necrosis after 40 min of heat stress, suggesting that the myocardial cells in vitro were obviously stressed and damaged by higher temperature. The levels of cleaved caspase-3 and cytochrome C, which were related to apoptosis, increased significantly after 40 min of heat stress while the Hsp90α protein level significantly decreased. In contrast, after 6 h of exposure to heat stress, the levels of cleaved caspase-3 and cytochrome C decreased while those of Hsp90α significantly increased, suggesting that early depletion of Hsp90α coincides with a high rate of necrosis and apoptosis in heat-stressed myocardial cells, while the Hsp90α level in surviving cells increases again with significantly less apoptosis after 6 h of heat stress. These findings also indicate that apoptosis of myocardial cells occurs through the activation of the cytochrome C and caspase-3 pathway. The cell repair capacity of Hsp90α is overstrained in the early phase of heat treatment and needs some hours to stabilize. As a result, in the primary myocardial cells in vitro, Hsp90α shows protective activity against damage at the end period of the heat exposure.
ABSTRACT. The mechanisms involved in sudden animal death due to acute heart failure during heat stress are not well understood. We examined the relationship between heat stress-induced variations of protective Hsp60 and expression of its regulatory factor, HSF-1, in heat-stressed primary myocardial cells of neonatal rats in vitro through cardiac enzyme detection, immunoblotting, immunocytochemistry, and qPCR. Increases in cardiac damage-related enzyme levels demonstrated injury to myocardial cells after heat exposure at 42°C. Hsp60 expression levels fluctuated during heat stress; they decreased significantly after 20 min, then increased at 120 min and decreased again at 360 min after initiation of heat stress. The highest levels of Hsp60 were observed at 240 min, while the lowest were at 60 min. Damage to myocardial cells was characterized by increases in cardiac enzyme levels and low levels of Hsp60 due to functional disorder of myocardial cells at early stages of heat stress. However, the significant induction of hsp60 mRNA levels from the beginning up to 240 min of heat stress was not consistent with the classic regulatory mechanisms that link transcription and translation, suggesting that Hsp60 expression is delayed due to loss of Hsp60 during the early stages of heat stress. hsf-1 mRNA levels were significantly increased from 10 min of heat stress; however, HSF-1 protein levels did not simultaneously increase, indicating that HSF-1 is not the sole regulator of Hsp60 expression.
Twenty pigs were randomly divided into four groups based on the amount of time spent in transport (zero, one, two or four hours). Pathological examination of all transported pigs showed that exfoliation of chief cells from the gastric surface occurred in pigs during transportation. These results imply that integrity of the gastric mucosa was compromised by damage occurring during the four-hour transportation, despite the fact that gastric ulcers were not present. Levels of Hsp90 expression in stomach tissues were significantly decreased (P<0.01) after two-hour transportation, but Hsp70 levels increased significantly (P<0.05) after one, two and four hours of transportation. Hsp27 levels remained relatively stable independent of the length of transport. Levels of αB-crystallin expression in the stomach were significantly increased (P<0.05) after four hours of transportation. Variations in Hsp90, Hsp70, Hsp27 and αB-crystallin levels suggest that distinct protective functions are modulated by different Hsps in stomach tissues during transportation. Alterations in Hsp70 and αB-crystallin expression appear to be associated with protective functions, as no apparent gastric ulcers were present in pigs that underwent four hours of transportation. Levels of heat shock transcription factor-1, which regulate the expression of Hsps, remained relatively stable independent of the transportation period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.