Use of resistant cultivars and adjustment of sowing dates are important measures for management of Fusarium wilt in chickpeas (Cicer arietinum). In this study, we examined the effect of temperature on resistance of chickpea cultivars to Fusarium wilt caused by various races of Fusarium oxysporum f. sp. ciceris. Greenhouse experiments indicated that the chickpea cultivar Ayala was moderately resistant to F. oxysporum f. sp. ciceris when inoculated plants were maintained at a day/night temperature regime of 24/21°C but was highly susceptible to the pathogen at 27/25°C. Field experiments in Israel over three consecutive years indicated that the high level of resistance of Ayala to Fusarium wilt when sown in mid- to late January differed from a moderately susceptible reaction under warmer temperatures when sowing was delayed to late February or early March. Experiments in growth chambers showed that a temperature increase of 3°C from 24 to 27°C was sufficient for the resistance reaction of cultivars Ayala and PV-1 to race 1A of the pathogen to shift from moderately or highly resistant at constant 24°C to highly susceptible at 27°C. A similar but less pronounced effect was found when Ayala plants were inoculated with F. oxysporum f. sp. ciceris race 6. Conversely, the reaction of cultivar JG-62 to races 1A and 6 was not influenced by temperature, but less disease developed on JG-62 plants inoculated with a variant of race 5 of F. oxysporum f. sp. ciceris at 27°C compared with plants inoculated at 24°C. These results indicate the importance of appropriate adjustment of temperature in tests for characterizing the resistance reactions of chickpea cultivars to the pathogen, as well as when determining the races of isolates of F. oxysporum f. sp. ciceris. Results from this study may influence choice of sowing date and use of chickpea cultivars for management of Fusarium wilt of chickpea.
Various aspects of the integration of genotype resistance and chemical control of Ascochyta blight (caused by Didymella rabiei) in chickpea were examined in field experiments from 1993 to 1999 and in greenhouse experiments. Four commercially available chickpea cultivars representing a range of resistance to D. rabiei were used. The efficacy of chemical control in a highly susceptible cultivar was significantly (P < 0.01) related to the conduciveness of the environment to the pathogen. Adequate disease suppression (>80% control) was achieved when weather supported mild epidemics, but insufficient control (<20%) was achieved when weather supported severe epidemics. The contribution of genotype resistance to disease suppression in a moderately susceptible cultivar varied from <10% when weather supported severe epidemics to approximately 60% when weather supported mild epidemics. Spraying a moderately resistant cultivar resulted in 95% control when weather supported mild epidemics, but only 65% control was achieved when weather supported severe epidemics. The existing level of resistance in a moderately resistant cultivar resulted in 70% control when weather supported severe epidemics; fungicides improved control efficacy significantly to >95%. Under mild epidemics, moderate resistance alone provided >95% control. The level of genotype resistance available in a highly resistant cultivar was sufficient to suppress the disease under all weather conditions, even without application of fungicides. The possibility of relying on postinfection rather than prophylactic application of fungicides was tested in the greenhouse and in four field experiments. Activity of the systemic fungicide tebuconazole was detected when the fungicide was applied up to 3 days postinfection, and application of tebuconazole or difenoconazole in the field as a postinfection treatment (i.e., after rain or overhead irrigation) suppressed the disease as effectively as preventive applications and required fewer sprays. In two experiments, the interaction between genotype resistance and chemical control at various amounts of irrigation applied via overhead sprinklers (as a simulation of rain) was tested. The results show that both the level of genotype resistance and the quantity of water should be taken into account in deciding whether to apply a postinfection spray.
The significance of preventing primary infections resulting from the teleomorph stage of Didymella rabiei was tested in field experiments in 1998 and 2000. Control efficacy was greater and yield and its components were higher in plots where the fungicide difenoconazole had been sprayed in time to protect the plants from infections resulting from airborne ascospores than in plots where sprays were not applied on time. Forty empirical models reflecting the influence of temperature and interrupted wetness on initial maturation of D. rabiei pseudothecia were developed and verified by using data recorded in chickpea fields in 1998. Seven of the models then were validated with data recorded in 1999 and 2000. The following model provided the best predictions: starting at the beginning of the rainy season (October to December), the predictor of the model was assigned one severity value unit when there was a rain event (1 day or more) with ≥10 mm of rain and an average daily temperature (during the rainy days) of ≤15°C. According to the model, pseudothecia mature after accumulation of six severity values and ascospores will be discharged during the following rain.
The effects of weed species on the anatomy of roots of cabbage (Brassica oleracea L.) and tomato (Lycopersicum esculentum Mill.) were studied. One crop seed was placed on agar in a test tube to germinate in association with four additional seeds of a weed species. All the weed species caused abnormal changes in the anatomy of cabbage and tomato roots. Jimsonweed (Datura stramonium L.) inhibited cell elongation and caused disruption of epidermis and disorganization of the root tissue in cabbage. Green foxtail (Setaria viridis (L.) Beauv.) also caused disruption of cabbage roots. Mustard (Brassica kaber DC.) and velvetleaf (Abutilon theophrasti Medic.) induced enlarged parenchyma cells of cabbage roots. The combination of tomato and jimsonweed resulted in disorganized root tissue or large roots with large parenchyma cells.
Studies were made of isozyme patterns of three enzymes and of total soluble proteins from seedlings of three crop species which were grown in association with different weed species. The gel electrofocusing separation technique was used. Marked qualitative and quantitative changes were observed in peroxidase of cabbage (Brassica oleracea L.) seedlings when grown in association with jimsonweed (Datura stramonium L.), velvetleaf (Abutilon theophrasti Medic.), wild mustard (Brassica kaber DC.), and green foxtail (Setaria viridis (L.) Beauv.). No differences were observed when lettuce (Lactuca sativa L.) and tomato (Lycopersicum esculentum Mill.) were grown in association with the above weed species. No differences were found in total soluble proteins or the isozyme patterns of esterase and acid phosphatase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.