We describe the results of test observations obtained with a 5-m single-dish radiotelescope (RT5) using novel planar feeds designed to detect circularly polarized emission in the 1.5 -3.9 GHz band. The beam of such feeds is wide; nevertheless, solar scans have been successfully done using feeds at the focus of the primary mirror of the RT5. The sensitivity is about 1 sfu at each polarization and about 1.4 sfu at the I Stokes parameter. We estimate that it is possible to detect flares with fluxes above 5 sfu at the I Stokes parameter.
We developed a mid infrared (MIR) solar telescope, centered at 10 µm. Various optical layouts were analyzed based on computer simulations and a RitcheyChretien 6-inches telescope was selected with a plate scale of 2.5′′/mm using a pyroelectric 4 × 16 pixels detector. The angular resolution is 36′′/pixel with a field of view of 9.6′×2.4′. Two germanium filters are used, one at the aperture of thetelescope and another near its focal plane. The detector was characterized with alaboratory black-body. The count values follow a linear relation with the blackbody temperature. The control systems for both the telescope and the detectorwere developed. Proper mechanical supports were designed for the filters, detectorand electronics. The system has been integrated and a user interface was developed. Preliminary observations have been made giving a signal-to-noise ratio of ≈ 1000.
Nanosatellite missions may contain payloads for high pointing accuracy such as laser communication systems for crosslinks or astronomical observations. Therefore, the satellite requires a precise orbital position and orientation determination in order to point the scientific instrument to the desired target. In this work, an elliptical rotation method based on quaternion representation is presented. The proposed method allows to determine the future position of a satellite around its orbit. Furthermore, in Low Earth Orbits (LEO) with an eccentricity larger than zero, the distance between the satellite and the Earth is changing over the time, increasing the satellite velocity in the perigee region compared to the apogee, due to the gravity forces. The elliptical rotation method and the orbital current position are deduced, considering a variable sampling-time as a function of the eccentricity and the orbital current position. The proposed algorithm can increase the position accuracy four times compared to fixed sampling time along the satellite orbit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.