We present a Stokes I, Q and U survey at 189 MHz with the Murchison Widefield Array 32element prototype covering 2400 square degrees. The survey has a 15.6 arcmin angular resolution and achieves a noise level of 15 mJy beam −1 . We demonstrate a novel interferometric data analysis that involves calibration of drift scan data, integration through the co-addition of warped snapshot images and deconvolution of the point spread function through forward modeling. We present a point source catalogue down to a flux limit of 4 Jy. We detect polarization from only one of the sources, PMN J0351-2744, at a level of 1.8 ± 0.4%, whereas the remaining sources have a polarization fraction below 2%. Compared to a reported average value of 7% at 1.4 GHz, the polarization fraction of compact sources significantly decreases at low frequencies. We find a wealth of diffuse polarized emission across a large area of the survey with a maximum peak of ∼13 K, primarily with positive rotation measure values smaller than +10 rad m −2 . The small values observed indicate that the emission is likely to have a local origin (closer than a few hundred parsecs). There is a large sky area at α ≥ 2 h 30 m where the diffuse polarized emission rms is fainter than 1 K. Within this area of low Galactic polarization we characterize the foreground properties in a cold sky patch at (α, δ) = (4 h , −27 • .6) in terms of three dimensional power spectra.
This contribution covers precise (cm-level) relative Global Navigation Satellite System (GNSS) positioning for which the baseline length can reach up to a few hundred km. Carrierphase ambiguity resolution is required to obtain this high positioning accuracy within manageable observation time spans. However, for such long baselines, the differential ionospheric delays hamper fast ambiguity resolution as based on current dual-frequency Global Positioning System (GPS). It is expected that the modernization of GPS towards a triple-frequency system, as well as the development of Galileo towards a full constellation will be beneficial in speeding up long-baseline ambiguity resolution. In this article we will predict ambiguity resolution success rates for GPS + Galileo for a 250 km baseline based on the ambiguity variance matrix, where the Galileo constellation is simulated by means of Yuma almanac data. From our studies it can be concluded that ambiguity resolution will likely become faster (less than ten minutes) in the case of GPS + Galileo when based on triplefrequency data of both systems, however much shorter times to fix the ambiguities (one-two minutes) can be expected when only a subset of ambiguities is fixed instead of the complete vector (partial ambiguity resolution).
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.