Статья посвящена усовершенствованию управления взаимосвязанным производством сушки в аппаратах с псевдоожиженным слоем. При рассмотрении технологического процесса, как объекта управления, в псевдоожиженным слое выделены струи, что позволило поставить задачу управления с учетом выявленной специфики и разработать систему управления влагосодержанием готового продукта. The article is devoted to improving the management of interconnected drying production in devices with a fluidized bed. When considering the technological process as a control object, jets were identified in the fluidized bed, which allowed us to set a control task taking into account the identified specifics and develop a system for controlling the moisture content of the finished product.
The article presents one of the possible options of mathematical model formation of an electric arc steel-making furnace (EAF). A lot of reports on this subject were studied in order to make a model that most accurately reflects the control object behavior (for EAF). The basic building principles demonstrate the fact that the primary element is substitution pattern of electric circuit of the installation. Cassie nonlinear differential equation was used to get a mathematical model of an electric arc. This nonlinear differential equation is very popular among the researchers. Model update is provided by calculating the electrical circuit parameters on the secondary side of transformer low voltage and by studying statistics from home and foreign scientists’ contributions. Different values of the “time-constant” of arc conductivity were used to analyze the control object behavior at different instants of time. It made it possible to take into account the nonstationarity of the state of electrode sheaths that were influenced by external disturbances, temperature variations, pressure and gas composition in the course of production processes. Such an approach made possible to form an aggregate picture of the control object behavior under the conditions of a nonstationary state of the arc combustion area at different stages of melting; to evaluate possible regulation characteristics and to determine control system requirements. The structural scheme of the model of a three-phase AC–EAF was formed. All necessary calculations of circuit elements and modeling were performed using the MATLAB Simulink package. The block diagram includes AC voltage source, direct-current resistance, and inductance of the transformer on secondary side and a low-voltage circuit, a model of an AC electric arc. The model was used to analyze the dynamic characteristics of electric arc as being an electrical object to show the voltage–dependence of current – current-voltage characteristics. The configuration of current-voltage characteristics determines burning behavior of the arc, existence domain, stability and control quality. Current-voltage characteristics were studied under the conditions of different values of the voltage on the secondary side of transformer and arc length and for different values of the “time-constant arc conductivity”. The model was also used to analyze the static characteristics. The dependence of the arc length on the current for different voltage of the transformer steps is nonlinear. Recommendations on the choice of control actions and the construction of control systems for different stages of melting are given. For example at the initial stage of melting, the control system should perform minimization problems of number of breaks under the condition of an insignificant domain of the arc existence and limit the value of lead-in power. The simulation results show that the nonstationarity of the process leads to the need to use self-organizing control systems capable of adjusting to the continually varying state of the object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.