We investigated intermodality agreements of strains from two-dimensional echocardiography (2DE) and cardiac magnetic resonance (CMR) feature tracking (FT) in the assessment of right (RV) and left ventricular (LV) mechanics in tetralogy of Fallot (TOF). Patients were prospectively studied with 2DE and CMR performed contiguously. LV and RV strains were computed separately using 2DE and CMR-FT. Segmental and global longitudinal strains (GLS) for the LV and RV were measured from four-chamber views; LV radial (global radial strain [GRS]) and circumferential strains (GCS) measured from short-axis views. Intermodality and interobserver agreements were examined. In 40 patients (20 TOF, mean age 23 years and 20 adult controls), LV, GCS showed narrowest intermodality limits of agreement (mean percentage error 9.5%), followed by GLS (16.4%). RV GLS had mean intermodality difference of 25.7%. GLS and GCS had acceptable interobserver agreement for the LV and RV with both 2DE and CMR-FT, whereas GRS had high interobserver and intermodality variability. In conclusion, myocardial strains for the RV and LV derived using currently available 2DE and CMR-FT software are subject to considerable intermodality variability. For both modalities, LV GCS, LV GLS, and RV GLS are reproducible enough to warrant further investigation of incremental clinical merit.
Emax can be determined from RT3DE integrated with catheterization-derived pressures. RT3DE is a promising method for enhancing clinical applicability of pressure-volume relations for assessment of myocardial contractility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.