We present a modeling strategy for assessing the reliability cost for improved performance from modified interconnect structures. We have studied air gaps which have been deliberately introduced in the passivation between aluminum interconnect lines as a means for increasing transmission speed by decreasing dielectric capacitance. The models allow examination of tradeoffs between improved circuit performance and decreased reliability due to dielectric cracking. Stresses in the dielectric due to electromigration in the metal were modeled using finite element analysis. These stresses were used to compute an estimate of the mean time to failure relative to the case with no air gap using an electromigration failure model from MIT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.