Due to their capability of dealing with nonlinear problems, Artificial Neural Networks (ANN) are widely used with several purposes. Once trained, they are capable to solve unprecedented situations, keeping tolerable errors in their outputs. However, humans cannot assimilate the knowledge kept by those nets, since such knowledge is implicitly represented by their connections weights. So, in order to facilitate the extraction of rules that describe the knowledge of ANN, Formal Concept Analysis (FCA) and rule extraction algorithms as the Next Closure algorithm have been used. In this work, this method is implemented on Sophiann, a computational tool that combines ANN, FCA and the rule extraction algorithms to compute the minimal implication base (Stem Base). As an example, solar energy systems are the domain application considered here, due to their importance as substitutes of traditional energy systems.
The objective of the current research is to evaluate and compare the corrosion protection efficiency of the microcapsules containing tung oil and copaiba oil using stereoscopic images, electrochemical tests, open circuit potential (OCP), and polarization curves (Tafel analysis). Carbon steel plates were painted with three different coating systems: (a) a coating system with an automotive primer which served as the control, (b) a coating system with microcapsules containing 3% tung oil, and (c) a coating system with microcapsules containing 3% copaiba oil. A crosscut was performed using a scalpel on the coating surfaces to promote the release of the oils, and after drying, electrochemical cells were assembled using electrolyte 3% NaCl. From OCP analyses, it was verified that the coating system containing tung oil loaded microcapsules obtained more positive final values than the control system and the coating system containing copaiba oil loaded microcapsules. The stereoscope images corroborate the OCP results, and the polarization curve analyses also indicated that the microcapsules containing tung oil offer better corrosion protection than the other systems studied.
ResumoO aço carbono é um material amplamente empregado na indústria petrolífera devido sua elevada resistência mecânica e baixo custo. Entretanto, este material não possui boa resistência à corrosão. Neste contexto a predição da taxa de corrosão é de extrema importância para estimar a durabilidade desses materiais. Atualmente isto é feito com base em dados de ensaios de perda de massa em um único tempo de imersão, estimando-se a taxa de corrosão. Contudo, para converter os dados de perda de massa em taxas de corrosão é imprescindível que os ensaios sejam conduzidos em diferentes tempos de imersão e que haja linearidade entre perda de massa e tempo. Neste trabalho a corrosão do aço carbono em meios saturados com CO2 foi investigada através de ensaios de perda de massa em três tempos de imersão diferentes, com o objetivo de avaliar essa linearidade. Dos quatro meios corrosivos estudados, um não apresentou linearidade entre PM e tempo de imersão, sendo portanto incorreto extrapolar os dados para taxa de corrosão. Os resultados comprovaram que a extrapolação de dados de PM para taxas de corrosão não pode ser aplicada sem uma prévia verificação da linearidade entre perda de massa e tempo de imersão. Palavras-chave: Corrosão; CO2; Perda de massa; Taxa de corrosão.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.