To understand the functional significance of RNA processing for the expression of plastome-encoded photosynthesis genes, we investigated the nuclear mutation hcf107 of Arabidopsis. The mutation is represented by two alleles, both of which lead to a defective photosystem II (PSII). In vivo protein labeling, in vitro phosphorylation, and immunoblot experiments revealed that the psbB gene product (CP47) and an 8-kD phosphoprotein, the psbH gene product (PsbH), are absent in mutant plants. PsbH and PsbB are essential requirements for PSII assembly in photosynthetic eukaryotes, and their absence in hcf107 is consistent with the PSII-less mutant phenotype. RNA gel blot hybridizations showed that the hcf107 mutation specifically impairs the accumulation of some but not all oligocistronic psbH transcripts that are released from the pentacistronic psbB-psbT-psbH-petB-petD precursor RNA by intergenic endonucleolytic cleavage. In contrast, neither the levels nor the sizes of psbB-containing RNAs are affected. S1 nuclease protection analyses revealed that psbH RNAs are lacking only where psbH is the leading cistron and that they are processed at position -45 in the 5' leader segment of psbH. These data and additional experiments with the cytochrome b(6)f complex mutant hcf152, which is defective in 3' psbH processing, suggest that only those psbH-containing transcripts that are processed at their -45 5' ends can be translated. Secondary structure analysis of the 5' psbH leader predicted the formation of stable stem loops in the nonprocessed transcripts, which are unfolded by processing at the -45 site. We propose that this unfolding of the psbH leader segment as a result of RNA processing is essential for the translation of the psbH reading frame. We suggest further that HCF107 has dual functions: it is involved in intercistronic processing of the psbH 5' untranslated region or the stabilization of 5' processed psbH RNAs, and concomitantly, it is required for the synthesis of CP47.
and optical modeling, we investigate the possible evolution of this cloud assuming either in situ freezing of ternary HNOa/H2SO4/H20 droplets as nitric acid trihydrate, or the formation of the clouds in mountain waves over the east coast of Greenland, as suggested by a mountain wave model. Best agreement with the observations was obtained by assuming mountain-wave-induced cloud formation, which yields nitric acid trihydrate particles with much higher total mass than achieved by assuming synoptic-scale freezing. Our analysis suggests that this rare type of PSC, which we term type Ia-enh, is characterized by nitric acid hydrate particles rather close to thermodynamic equilibrium, while the more common type Ia PSCs appear to contain much less mass than representative of equilibrium.
A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during JulyAugust 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment-Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory's Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During the MOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL-ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during the WAVES_2007 campaign was a misaligned interference filter. With full laser power and a properly tuned interference filter, RASL is shown to be capable of measuring the main water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.