The major goal of this research is to see how carbon nanotubes and silica fume affect the durability and mechanical qualities of high-performance concrete (HPC). Mechanical properties, such as split tensile strength, compressive strength, elasticity modulus, and flexural strength, and durability properties like water absorption, abrasion, chloride penetration, acid, and sea water resistance, impact resistance of HPC consisting silica fume (SF), and carbon nanotubes (CNT) were examined in this study. Varied trail combinations with different proportions of CNT and SF admixtures were created for this reason. Portland cement was partially replaced with 1 percent, 1.5 percent, 2 percent, and 3 percent CNT, while SF was substituted with 5 percent, 7.5 percent, and 10 percent. Both CNT and SF outperform conventional concrete in terms of mechanical and durability attributes, according to the findings. CNT produces superior results than SF due to its smaller size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.