No construction activity can be conceived in the current context without concrete. A popular method is to manufacture concrete from a mixture of three ingredients: aggregates, cement, and water. Because of poor construction materials, many structures deflect prematurely and excessively. Another major worry in the building business is the cost of materials required to make concrete. As a result, adding other suitable components (known as additives) in a specific proportion to boost concrete strength is a regular requirement. Teff agriculture is more prevalent in the study region (Ambo Town), as Enjera is a common Ethiopian delicacy made from Teff. Nanofiber-based Teff Straw production from Teff agricultural fields is in excess, and it was not being used for anything other than feeding cattle, donkeys, and other animals. As a result, farmers use the unfavorable habit of burning surplus Nanofiber-based Teff Straw, resulting in environmental pollution issues such as carbon footprint. Furthermore, the natural Nanofiber-based Teff Straw is extremely strong, used to blend nanoparticles, and it may be useful in overcoming general structural problems while also being cost-effective for local building businesses. In light of this, the current research focuses on an experimental assessment of the applicability of Nanofiber-based Teff Straw as an extra concrete material in concrete mixes. The typical mix for C25 concrete has been designed to achieve a target average strength of 28 MPa with a liquid (water)-cement ratio (l-c ratio) of 0.50 and a slump range of 20-50 mm. All Nanofiber-based Teff Straw reinforced concrete beam samples failed due to pure flexural failure, whereas plane concrete beams failed due to beam crushing. With the addition of Nanofiber-based Teff Straw to concrete, the mean flexural strength increased by 19.38 percent, 4.19 percent, and 0.66 percent, respectively, with M1, M2, and M3 adding up this particular ingredient by the weight of concrete. As a result, adding Nanofiber-based Teff Straw to concrete increased its bending strength when compared to ordinary concrete. Slump reduction effects of 20.00 percent, 40.00 percent, and 50.00 percent were seen for mix designs M1, M2, and M3 when Nanofiber-based Teff Straw was added to the concrete weight. Finally, due to volume addition of fresh concrete with Nanofiber-based Teff Straw, fresh concrete densities were reduced by 2.00 percent, 2.32 percent, and 2.84 percent, respectively.