Time-varying envelopes are a common feature of acoustic communication signals like human speech and induce a variety of percepts in human listeners. We studied the responses of 109 single neurons in the inferior colliculus (IC) of the anesthetized Mongolian gerbil to contralaterally presented sinusoidally amplitude-modulated (SAM) tones with a wide range of parameters. Modulation transfer functions (MTFs) based on average spike rate (rMTFs) showed regions of enhancement and suppression, where spike rates increased or decreased respectively as stimulus modulation depth increased. Specifically, almost all IC rMTFs could be described by some combination of a primary and a secondary region of enhancement and an intervening region of suppression, with these regions present to varying degrees in individual rMTFs. rMTF characteristics of most neurons were dependent on sound pressure level (SPL). rMTFs in most neurons with "onset" or "onset-sustained" peri-stimulus time histograms (PSTHs) in response to brief pure tones showed only a peaked primary region of enhancement. The region of suppression tended to occur in neurons with "sustained" or "pauser" PSTHs, and usually emerged at higher SPLs. The secondary region of enhancement was only found in eight neurons. The lowest modulation frequency at which the spike rate reached a clear peak ("best modulation frequency" or BMF) was measured. All but two mean BMFs lay between 0 and 100 Hz. Fifty percent of the 49 neurons tested over at least a 20-dB range of SPLs showed a BMF variation larger than 66% of their mean BMF. MTFs based on vector strength (tMTFs) showed a variety of patterns; although mostly similar to those reported from the cochlear nucleus, tMTFs of IC neurons showed higher maximum values, smaller dynamic range with depth, and a lower high-frequency limit for significant phase locking. Systematic and large increases in phase-lead commonly occurred as SPL increased. rMTFs measured at multiple carrier frequencies (F(c)s) showed that the suppressive region was not the result of sideband inhibition. There was no systematic relationship between BMF and F(c) of stimulation in the cells studied, even at low carrier frequencies. The results suggest various possible mechanisms that could create IC MTFs, and strongly support the idea that inhibitory inputs shape the rMTF by sharpening regions of enhancement and creating a suppressive region. The paucity of BMFs above 100 Hz argues against simple rate-coding schemes for pitch. Finally, any labeled line or topographic representation of modulation frequency is unlikely to be independent of SPL.
In the visual world, stimuli compete with each other for allocation of the brain's limited processing resources. Computational models routinely invoke wide-ranging mutually suppressive interactions in spatial priority maps to implement active competition for attentional and saccadic allocation, but such suppressive interactions have not been physiologically described, and their existence is controversial. Much evidence implicates the lateral intraparietal area as a candidate priority map in the macaque (Macaca mulatta). Here, we demonstrate that the responses of neurons in the lateral intraparietal area (LIP) to a task-irrelevant distractor are strongly suppressed when the monkey plans saccades to locations outside their receptive fields. Suppression can be evoked both by flashed visual stimuli and by a memorized saccade plan. The suppressive surrounds of LIP neurons are spatially tuned and wide ranging. Increasing the monkey's motivation enhances target-distractor discriminability by enhancing both distractor suppression and the saccade goal representation; these changes are accompanied by correlated improvements in behavioral performance.
The activity of neurons in the lateral intraparietal area (LIP) of the monkey predicts the monkey's allocation of spatial attention. We show here that despite being relatively high within the visual hierarchy, neurons in LIP have extremely short and precise visual latencies. Mean latency was 45.2 msec; the timing precision of the onset response was usually better than 4 msec. The majority of neurons had a pause in response after an initial burst, followed by more sustained visual activity. Previous attention allocation had no effect on either the latency or magnitude of the initial burst, but produced clear effects on the magnitude of the later sustained activity. Together, these data indicate that the initial burst in LIP visual response reflects an uncontaminated sensory signal. Information about stimulus onset is transmitted rapidly through the visual system to LIP; the on-response has a higher speed and temporal precision than realized previously. This information could be used to orient attention to novel objects in the visual environment rapidly and reliably.
The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) user facility recently initiated the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) activity focused on shallow convection at ARM’s Southern Great Plains (SGP) atmospheric observatory in Oklahoma. LASSO is designed to overcome an oft-shared difficulty of bridging the gap from point-based measurements to scales relevant for model parameterization development, and it provides an approach to add value to observations through modeling. LASSO is envisioned to be useful to modelers, theoreticians, and observationalists needing information relevant to cloud processes. LASSO does so by combining a suite of observations, LES inputs and outputs, diagnostics, and skill scores into data bundles that are freely available, and by simplifying user access to the data to speed scientific inquiry. The combination of relevant observations with observationally constrained LES output provides detail that gives context to the observations by showing physically consistent connections between processes based on the simulated state. A unique approach for LASSO is the generation of a library of cases for days with shallow convection combined with an ensemble of LES for each case. The library enables researchers to move beyond the single-case-study approach typical of LES research. The ensemble members are produced using a selection of different large-scale forcing sources and spatial scales. Since large-scale forcing is one of the most uncertain aspects of generating the LES, the ensemble informs users about potential uncertainty for each date and increases the probability of having an accurate forcing for each case.
We experience a visually stable world despite frequent retinal image displacements induced by eye, head, and body movements. The neural mechanisms underlying this remain unclear. One mechanism that may contribute is transsaccadic remapping, in which the responses of some neurons in various attentional, oculomotor, and visual brain areas appear to anticipate the consequences of saccades. The functional role of transsaccadic remapping is actively debated, and many of its key properties remain unknown. Here, recording from two monkeys trained to make a saccade while directing attention to one of two spatial locations, we show that neurons in the middle temporal area (MT), a key locus in the motion-processing pathway of humans and macaques, show a form of transsaccadic remapping called a memory trace. The memory trace in MT neurons is enhanced by the allocation of top-down spatial attention. Our data provide the first demonstration, to our knowledge, of the influence of top-down attention on the memory trace anywhere in the brain. We find evidence only for a small and transient effect of motion direction on the memory trace (and in only one of two monkeys), arguing against a role for MT in the theoretically critical yet empirically contentious phenomenon of spatiotopic feature-comparison and adaptation transfer across saccades. Our data support the hypothesis that transsaccadic remapping represents the shift of attentional pointers in a retinotopic map, so that relevant locations can be tracked and rapidly processed across saccades. Our results resolve important issues concerning the perisaccadic representation of visual stimuli in the dorsal stream and demonstrate a significant role for top-down attention in modulating this representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.