Every eye movement produces a shift in the visual image on the retina. The receptive field, or retinal response area, of an individual visual neuron moves with the eyes so that after an eye movement it covers a new portion of visual space. For some parietal neurons, the location of the receptive field is shown to shift transiently before an eye movement. In addition, nearly all parietal neurons respond when an eye movement brings the site of a previously flashed stimulus into the receptive field. Parietal cortex both anticipates the retinal consequences of eye movements and updates the retinal coordinates of remembered stimuli to generate a continuously accurate representation of visual space.
is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In-mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .
The space around us is represented not once but many times in parietal cortex. These multiple representations encode locations and objects of interest in several egocentric reference frames. Stimulus representations are transformed from the coordinates of receptor surfaces, such as the retina or the cochlea, into the coordinates of effectors, such as the eye, head, or hand. The transformation is accomplished by dynamic updating of spatial representations in conjunction with voluntary movements. This direct sensory-to-motor coordinate transformation obviates the need for a single representation of space in environmental coordinates. In addition to representing object locations in motoric coordinates, parietal neurons exhibit strong modulation by attention. Both top-down and bottom-up mechanisms of attention contribute to the enhancement of visual responses. The saliance of a stimulus is the primary factor in determining the neural response to it. Although parietal neurons represent objects in motor coordinates, visual responses are independent of the intention to perform specific motor acts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.