Obesity is globally prevalent and highly heritable, but the underlying genetic factors remain largely elusive. To identify genetic loci for obesity-susceptibility, we examined associations between body mass index (BMI) and ~2.8 million SNPs in up to 123,865 individuals, with targeted follow-up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity-susceptibility loci and identified 18 new loci associated with BMI (P<5×10−8), one of which includes a copy number variant near GPRC5B. Some loci (MC4R, POMC, SH2B1, BDNF) map near key hypothalamic regulators of energy balance, and one is near GIPR, an incretin receptor. Furthermore, genes in other newly-associated loci may provide novel insights into human body weight regulation.
is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In-mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .
(word count: 239):Murine syngeneic tumor models are critical to novel immuno-based therapy development but the molecular and immunological features of these models are still not clearly defined. The translational relevance of differences between the models is not fully understood, impeding appropriate preclinical model selection for target validation, and ultimately hindering drug development. Across a panel of commonly-used murine syngeneic tumor models, we showed variable responsiveness to immunotherapies. We employed array comparative genomic hybridization, whole-exome sequencing, exon microarray analysis, and flow cytometry to extensively characterize these models, which revealed striking differences that may underlie these contrasting response profiles. We identified strong differential gene expression in immune-related pathways and changes in immune cell-specific genes that suggested differences in tumor immune infiltrates between models. Further investigation using flow cytometry showed differences in both the composition and magnitude of the tumor immune infiltrates, identifying models that harbor 'inflamed' and 'non-inflamed' tumor immune infiltrate phenotypes. We also found that immunosuppressive cell types predominated in syngeneic mouse tumor models that did not respond to immune-checkpoint blockade, whereas cytotoxic effector immune cells were enriched in responsive models. A cytotoxic cell-rich tumor immune infiltrate has been correlated with increased efficacy of immunotherapies in the clinic and these differences could underlie the varying response profiles to immunotherapy between the syngeneic models. This characterization highlighted the importance of extensive profiling and will enable investigators to select appropriate models to interrogate the activity of immunotherapies as well as combinations with targeted therapies in vivo.4
Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ∼2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was rs11118316 at LYPLAL1 gene (p = 3.1×10E-09), previously identified in association with waist–hip ratio. For SAT, the most significant SNP was in the FTO gene (p = 5.9×10E-08). Given the known gender differences in body fat distribution, we performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6×10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women], p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by waist–hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only 7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.
Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.