is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that (KL) or (KP) comutations define distinct subgroups of -mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups ( < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with -mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free ( < 0.001) and overall ( = 0.0015) survival compared with ; LUAC. Among 924 LUACs, alterations were the only marker significantly associated with PD-L1 negativity in TMB LUAC. The impact of alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In-mutant murine LUAC models, loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify alterations as a major driver of primary resistance to PD-1 blockade in -mutant LUAC. This work identifies alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. .
Summary Background Retrospective evidence indicates that disease progression after first-line chemotherapy for metastatic non-small cell lung cancer (NSCLC) occurs most often at sites of disease known to exist at baseline. However, the potential benefit of aggressive local consolidative therapy (LCT) on progression-free survival (PFS) for patients with oligometastatic NSCLC is unknown. Methods We conducted a multicenter randomized study (NCT01725165; currently ongoing but not recruiting participants) to assess the effect of LCT on progression-free survival ((PFS). Eligible patients hadwere (1) histologic confirmation of (2) stage IV NSCLC, (3) ≤3 disease sites after systemic therapy, and (4) no disease progression before randomization. Front line therapy was ≥4 cycles of platinum doublet therapy or ≥3 months of inhibitors of epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) for patients with EGFR mutations or ALK rearrangements. Patients were randomized to either LCT ([chemo]radiation or resection of all lesions) +/− maintenance therapy versus maintenance therapy/observation only. Maintenance therapy was recommended based on a list of approved regimens, and observation was defined as close surveillance without cytotoxic therapy. Randomization was not masked and was balanced dynamically on five factors: number of metastases, response to initial therapy, central nervous system metastases, intrathoracic nodal status, and EGFR/ALK status. The primary endpoint was PFS, powered to detect an increase from 4 months to 7 months (hazard ratio [HR}=0.57) using intent-to-treat analysis. The plan was to study 94 randomized patients, with an interim analysis at 44 events. PFS, overall survival (OS), and time to develop a new lesion were compared between arms with log-rank tests. Results The study was terminated early after treatment of 49 patients (25 LCT, 24 control), when at a median follow-up time for PFS of 18.7 months, the median PFS time in the LCT group was 11.9 months (90% confidence interval [CI] 5.72 ,20.90) versus 3.9 months (90% CI 2.30, 6.64) in the maintenance group (HR=0.35, 90% CI 0.18,0.66, log rank p=0.005). Toxicity was similar between groups, with no grade 4–5 events. Grade 3 or higher adverse events in the maintenance therapy arm were fatigue (n=1) and anemia (n=1). In the LCT arm, Grade 3 events were: esophagitis (n=2), anemia (n=1), pneumothorax (n=1), and abdominal pain (n=1). Overall survival data are immature, with only 14 deaths recorded. Interpretation LCT +/− maintenance therapy for patients with ≤3 metastases from NSCLC that did not progress after initial systemic therapy improved PFS relative to maintenance therapy alone. These findings imply that aggressive local therapy should be further explored in phase III trials as a standard treatment option in this clinical scenario.
PURPOSE Our previously published findings reported that local consolidative therapy (LCT) with radiotherapy or surgery improved progression-free survival (PFS) and delayed new disease in patients with oligometastatic non–small-cell lung cancer (NSCLC) that did not progress after front-line systemic therapy. Herein, we present the longer-term overall survival (OS) results accompanied by additional secondary end points. PATIENTS AND METHODS This multicenter, randomized, phase II trial enrolled patients with stage IV NSCLC, three or fewer metastases, and no progression at 3 or more months after front-line systemic therapy. Patients were randomly assigned (1:1) to maintenance therapy or observation (MT/O) or to LCT to all active disease sites. The primary end point was PFS; secondary end points were OS, toxicity, and the appearance of new lesions. All analyses were two sided, and P values less than .10 were deemed significant. RESULTS The Data Safety and Monitoring Board recommended early trial closure after 49 patients were randomly assigned because of a significant PFS benefit in the LCT arm. With an updated median follow-up time of 38.8 months (range, 28.3 to 61.4 months), the PFS benefit was durable (median, 14.2 months [95% CI, 7.4 to 23.1 months] with LCT v 4.4 months [95% CI, 2.2 to 8.3 months] with MT/O; P = .022). We also found an OS benefit in the LCT arm (median, 41.2 months [95% CI, 18.9 months to not reached] with LCT v 17.0 months [95% CI, 10.1 to 39.8 months] with MT/O; P = .017). No additional grade 3 or greater toxicities were observed. Survival after progression was longer in the LCT group (37.6 months with LCT v 9.4 months with MT/O; P = .034). Of the 20 patients who experienced progression in the MT/O arm, nine received LCT to all lesions after progression, and the median OS was 17 months (95% CI, 7.8 months to not reached). CONCLUSION In patients with oligometastatic NSCLC that did not progress after front-line systemic therapy, LCT prolonged PFS and OS relative to MT/O.
The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma (LUAC) are poorly characterized. We performed an integrative analysis of genomic, transcriptomic and proteomic data from early-stage and chemo-refractory LUAC and identified three robust subsets of KRAS-mutant LUAC dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP) and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further reveal biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant LUAC with distinct biology and therapeutic vulnerabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.