We report a photoluminescence study of excitons localized by interface fluctuations in a narrow GaAs͞AlGaAs quantum well. This type of structure provides a valuable system for the optical study of quantum dots. By reducing the area of the sample studied down to the optical near-field regime, only a few dots are probed. With resonant excitation we measure the excited-state spectra of single quantum dots. Many of the spectral lines are linearly polarized with a fine structure splitting of 20 -50 meV. These optical properties are consistent with the characteristic asymmetry of the interface fluctuations. PACS numbers: 78.55.Cr, 71.35.Cc In this Letter we describe the polarization dependence of the optical spectra of single naturally formed GaAs quantum dots. Most previous optical studies of quantum dots (QDs) have probed large ensembles which have led to inhomogeneous broadening of the spectral features. However, recently several groups have shown that it is possible to study single QDs with photoluminescence (PL) either by reducing the size of the sample, [1] by cathodoluminescence [2,3], or by reducing the size of the laser spot on the sample through microscopic [4,5] or optical near-field techniques [6]. Here we use a similar technique whereby we combine high spatial and spectral resolution optics with excitation spectroscopy to study in detail the spectrum of a single QD [7]. With improved resolution we are able to resolve the spectral lines and to study the polarization dependence of the PL spectrum of an individual QD. We often find that the PL is linearly polarized along the (110) crystal axes and observe a fine structure splitting in each of the spectral lines. These results are analogous to the early days of atomic spectroscopy as improvements in techniques allowed the observation of fine structure splittings in the optical spectra. However, the physical phenomena responsible for the effects presented here are unique to the quantized condensed matter system.The QDs we have studied were formed naturally by interface steps in narrow quantum wells [4][5][6][7]. Specifically, the electrons and holes become localized into QDs in regions of the quantum well that are a monolayer wider than the surrounding region and, therefore, have a slightly smaller confinement energy. These well width fluctuations arise from monolayer-high islands at the interfaces which are randomly formed on the growth-interrupted surface by the migration of the cations to step edges. By interrupting the growth these islands can grow to diameters larger than the exciton Bohr diameter (20 nm). A scanning tunneling microscope image of a growth-interrupted GaAs surface grown under similar conditions as our quantum dot sample is shown in Fig. 1. Large monolayer-high islands of varying lateral sizes are evident, and the islands tend to be elongated along the [110] crystal axis. Thus we intuitively expect that the optical properties associated with the localized excitons will reflect this characteristic interface structure. In fact, as we will...
The homogeneous linewidths in the photoluminescence excitation spectrum of a single, naturally formed gallium arsenide (GaAs) quantum dot have been measured with high spatial and spectral resolution. The energies and linewidths of the homogeneous spectrum provide a new perspective on the dephasing dynamics of the exciton in a quantum-confined, solid-state system. The origins of the linewidths are discussed in terms of the dynamics of the exciton in zero dimensions, in particular, in terms of lifetime broadening through the emission or absorption of phonons and photons.
Low-injection minority carrier lifetimes ͑MCLs͒ and deep trap spectra have been investigated in n − 4H-SiC epilayers of varying layer thicknesses, in order to enable the separation of bulk lifetimes from surface recombination effects. From the linear dependence of the inverse bulk MCL on the concentration of Z1/Z2 defects and from the behavior of the deep trap spectra in 4H-SiC p-i-n diodes under forward bias, we conclude that it is Z1/Z2 alone that controls the MCL in this material.
We have studied the magnetic and structural properties of epitaxial bcc Fe͑001͒ films grown at 175°C on molecular-beam epitaxy-prepared GaAs͑001͒-2ϫ4 and -c(4ϫ4) reconstructed surfaces, with film thicknesses ranging up to ϳ30 ML ͑ϳ43 Å͒. We present measurements of the thickness-dependent evolution of the magnetic properties of the Fe films as determined by in situ magneto-optic Kerr effect. We find that the magnetic properties and growth mode are similar for both 2ϫ4 and c(4ϫ4) reconstructions, although the initial adsorption sites and island nucleation as measured by scanning tunneling microscopy are clearly dominated by the substrate surface reconstruction. The onset of room-temperature ferromagnetism occurs at 6 ML for growth on both GaAs surface reconstructions. At this coverage, the measured Curie temperature ͑ϳ100°C͒ is significantly reduced from that of bulk ␣-Fe ͑770°C͒. The anisotropy is dominated by a uniaxial component such that the two ͗110͘ axes are inequivalent for all coverages studied. Shape anisotropy does not appear to play a significant role. ͓S0163-1829͑97͒08037-5͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.