A high‐energy Aptian–Albian platform margin in northern Oman fronted onto an open oceanic basin, making the area a valuable analogue for coeval guyot margins. Most similar aged carbonate margins described in the literature faced either intracratonic or minor oceanic basins. The studied margin is characterized by a stabilized outer rim, which, although it did not rise discernibly above the adjacent lagoonal deposits, flanked a steep upper slope (32–40°) basinwards with a relief of at least 30 m. Two main facies provided the rigidity of the outer margin: Lithocodium boundstones that constituted up to 50% of the rock volume; and marine fibrous cements that occluded up to 35% of primary pore space. In contrast, coral–rudist patches and other shelly sessile benthos were distributed irregularly, and the rudist bioherms of the outer margin were often disrupted, with shells being transported and redeposited. The inner margin is characterized by wedge‐shaped storm layers that radiate from the platform top lagoonwards, where they interdigitate with carbonate sands and small rudist bioherms. Polygenetic discontinuity surfaces that bear evidence of both marine hardground and subaerial exposure stages are prominent features of the margin. Throughout the latest Aptian to Middle Albian, the platform succession recorded some 30 relative sea‐level falls, of which seven reached amplitudes of many tens of metres. These seven high‐amplitude falls in sea level are recorded across the entire south‐eastern portion of the Arabian craton and are probably of eustatic origin.
The controlling parameters of early marine carbonate cementation in shoal water and hemipelagic to pelagic domains are well‐studied. In contrast, the mechanisms driving the precipitation of early marine carbonate cements at deeper slope settings have received less attention, despite the fact that considerable volumes of early marine cement are present at recent and fossil carbonate slopes in water depths of several hundreds of metres. In order to better understand the controlling factors of pervasive early marine cementation at greater water depths, marine carbonate cements observed along time‐parallel platform to basin transects of two intact Pennsylvanian carbonate slopes are compared with those present in the slope deposits of the Permian Capitan Reef and Neogene Mururoa Atoll. In all four settings, significant amounts of marine cements occlude primary pore spaces downslope into thermoclinal water depths, i.e. in a bathymetric range between some tens and several hundreds of metres. Radial, radiaxial and fascicular optic fibrous calcites, and radiaxial prismatic calcites are associated with re‐deposited facies, boundstones and rudstones. Botryoidal (formerly) aragonitic precipitates are common in microbially induced limestones. From these case studies, it is tentatively concluded that sea water circulation in an extensive, near‐sea floor pore system is a first‐order control on carbonate ion supply and marine cementation. Coastal upwelling and internal or tidal currents are the most probable mechanisms driving pore water circulation at these depths. Carbonate cements precipitated under conditions of normal to elevated alkalinity, locally elevated nutrient levels and variable sea water temperatures. The implications of these findings and suggestions for future work are discussed.
Red-stained platform facies are a common feature of many carbonate settings throughout the geological record. Although the mechanisms involved in red staining of subaerially exposed or argillaceous, peri-platform limestones are reasonably well understood, the environmental and oceanographic significance of red carbonates often remains uncertain. Here, sedimentological, sequence stratigraphic, geochemical, paleontological, and quantitative bathymetric data from Pennsylvanian red intervals across a well exposed carbonate platform top and slope are documented and interpreted in a process-oriented context. On the upper slope (80–350 meters below the shelf break), red intervals alternate with gray, mainly microbial algal boundstones. On the lower slope (350–600 meters below the shelf break), redeposited red-stained mud builds matrix-supported breccia tongues interbedded with predominantly redeposited, clast-supported carbonate debris. The presence of large volumes of fibrous calcite biocementstones as well as firmgrounds point to low sedimentation rates or omission. In terms of sequence stratigraphy, red intervals occur within maximum flooding intervals and reflect near platform drowning. Elevated δ18O values (2–3‰) and an essentially cool-water, heterotrophic biotic association in red intervals on platform top and slope suggest deposition during sea-level highs, associated with colder water masses and high nutrient levels. The most likely drivers are an elevated thermocline and upwelling. The red staining is the result of iron oxidation which occurred during early diagenesis, likely by iron bacteria. These red intervals provide an important bathymetric benchmark against which other (mainly Paleozoic) red facies can be tested and calibrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.