GaN/SiC heterojunction diodes have been fabricated and characterized. Epitaxial n-type GaN films were grown using metalorganic chemical vapor deposition (MOCVD) and electron cyclotron resonance assisted molecular beam epitaxy (ECR-MBE) on p-type Si-face 6H-SiC wafers. The I–V characteristics have diode ideality factors and saturation currents as low as 1.2 and 10−32 A/cm2, respectively. The built-in potential in the MOCVD- and ECR-MBE-grown n-p heterojunctions was determined from capacitance–voltage measurements at 2.90±0.08 eV and 2.82±0.08 eV, respectively. From the built-in potential the energy band offsets for GaN/SiC heterostructures are determined at ΔEC=0.11±0.10 eV and ΔEV=0.48±0.10 eV.
The temperature dependence of field emission through thermally grown silicon dioxide (SiO2) on n-type 4H and 6H silicon carbide (SiC) substrates is reported. Room-temperature SiO2/SiC barrier heights, ΦB, of 1.92 and 2.12 V are extracted for the 4H– and 6H–SiC samples, respectively, using a Fowler–Nordheim analysis. Barrier heights of 2.2 and 2.4 V along with a linear temperature-dependent barrier height lowering, ΔΦB/ΔT, of 2.4 and 2.0 mV/K for 4H– and 6H–SiC are extracted using an alternative analytical expression for tunneling from semiconducting substrates derived previously. In both analyses, the temperature-dependent flatband voltage, using the measured room-temperature value, was included.
A new heterobipolar transistor was made with the wide bandgap semicon-ductors gallium nitride (GaN) and silicon carbide (SiC). The heterojunction allows high injection efficiency, even at elevated temperatures. A record current gain of ten million was obtained at room temperature, decreasing to 100 at 535°C. An Arrhenius plot of current gain vs 1/T yields an activation energy of 0.43 eV that corresponds to the valence band barrier blocking the escape of holes from the base to the emitter. This activation energy is approximately equal to the difference of energy gaps between emitter and base. This Transistor can operate at high power without cooling. A power density of 30 KW/cm2 was sustained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.