The over-expression and -activation of hepatocyte growth factor receptor (Met) in various cancers has been linked to increased proliferation, progression to metastatic disease, and drug resistance. Developing a PET imaging agent to assess Met expression would aid in diagnosis and monitoring responses to Met-targeted therapies. In these studies Onartuzumab (MetMAb), the experimental therapeutic one-armed monoclonal antibody, was radiolabeled with 76Br or 89Zr and evaluated as an imaging agent in Met expressing cell lines and mouse xenografts. Methods 89Zr-df-Onartuzumab was synthesized using a desferrioxamine-Onartuzumab conjugate (df-Onartuzumab); 76Br-Onartuzumab was labeled directly. Met binding studies were performed using the human tumor-derived cell lines MKN-45, SNU-16 and U87-MG, which have relatively high, moderate and low levels of Met, respectively. Biodistribution and microPET imaging studies were performed in MKN-45 and U87-MG xenografts. Results 76Br-Onartuzumab and 89Zr-df-Onartuzumab exhibited specific, high affinity Met binding (nM) that was concordant with established Met expression levels. In MKN-45 (gastric carcinoma) xenografts, both tracers cleared slowly from non-target tissues with the highest uptakes in tumor, blood, kidney, and lung. 76Br-Onartuzumab MKN-45 tumor uptakes remained relatively constant from 18 h (5%ID/g) to 48 h (3%ID/g) and exhibited tumor:muscle ratios ranging from 4:1 to 6:1. In contrast, 89Zr-df-Onartuzumab MKN-45 tumor uptake continued to accumulate from 18 h (10%ID/g) to 120 h (23%ID/g), attaining tumor:muscle ratios ranging from 20:1 to 27:1. MKN-45 tumors were easily visualized in imaging studies with both tracers at 18 h but after 48 h 89Zr-df-Onartuzumab image quality improved with at least 2 fold greater tumor uptakes compared to non-target tissues. MKN-45 tumor uptakes for both tracers correlated significantly with tumor mass and Met expression, and were not affected by the presence of plasma shed Met. Conclusions 89Zr-df-Onartuzumab and 76Br-Onartuzumab specifically targeted Met in vitro and in vivo; 89Zr-df-Onartuzumab achieved higher tumor uptakes and tumor:muscle ratios than 76Br-Onartuzumab at later times suggesting that 89Zr-df-Onartuzumab would be better suited to image Met for diagnostic and prognostic purposes.
Bombesin (BBN) peptide exhibits high selectivity and affinity for the gastrin-releasing peptide receptor (GRPr). The GRPr is overexpressed on many human cancer cell types, thus making BBN a potent delivery vehicle for radionuclide targeting. In this study, the biologically active minimal sequence BBN(7-14) was labeled using the novel Tc '4 + 1' mixed-ligand system, [Tc(NS3)(CN-R)], in which Tc(III) is coordinated by a monodentate isocyanide linker bearing the peptide and the tetradentate, tripodal chelator, 2,2',2''-nitrilotriethanethiol (NS3). BBN(7-14) was N-terminally modified with Gly-Gly-Gly, betaAla, and Ser-Ser-Ser spacer groups (X) and functionalized with 4-(isocyanomethyl)benzoic acid (L1) or 4-isocyanobutanoic acid (L2), resulting in a series of [M(NS3)(L-X-BBN(7-14))] conjugates (M = 99mTc, Re). The isocyanide ligand frameworks were introduced using novel bifunctional coupling agents. The spacer groups (X), the monodentate isocyanide units, and a tetradentate NS3 chelator bearing a pendant carboxylic acid (NS3COOH) were proposed as pharmacological modifiers. 99mTc-labeling was performed in a two-step procedure by first preparing 99mTc-EDTA/mannitol followed by reactions with the isocyanides and NS3 or NS3COOH ligand frameworks. The 99mTc complexes were obtained with a radiochemical yield of 30-80% depending on the amount of the isocyanide (20-100 nmol) used. These new conjugates were purified by reversed-phased high-performance liquid chromatography (RP-HPLC) to give a radiochemical purity of >or=95%. The 99mTc conjugates exhibited high in vitro stability (>90%, 24 h). Analogous nonradioactive Re conjugates were synthesized and characterized by electrospray ionization mass spectrometry (ESI-MS). RP-HPLC analyses of the Re conjugates indicated that they exhibited identical retention times to the corresponding 99mTc conjugates under identical HPLC conditions, demonstrating structural similarity between the two metalated species. The [Re(NS3)(L-X-BBN(7-14))] conjugates exhibited GRPr affinity in the nanomolar range as demonstrated by in vitro competitive binding assays using PC-3 human prostate cancer cells. In vitro internalization/externalization assays indicated that approximately 65% of [99mTc(NS3)(L2-betaAla-BBN(7-14))] conjugate was either surface-bound or internalized in PC-3 cells. Cell-associated activity for all other 99mTc conjugates was below 20%. Biodistribution studies of [99mTc(NS3)(L-betaAla-BBN(7-14))], L = L1 or L2, in normal, CF-1 mice showed minimal accumulation in normal pancreas (a tissue expressing the GRPr in high density in rodent models) and rapid hepatobiliary elimination. Introduction of a carboxyl group onto the NS3 ligand framework had only minimal effects to increase renal excretion. Activity distribution and accumulation was highly dominated by the relatively lipophilic '4 + 1' complex unit.
Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.