BackgroundPoultry meat is one of the most important sources of human campylobacteriosis, an acute bacterial enteritis which is a major problem worldwide. Campylobacter coli and Campylobacter jejuni are the most common Campylobacter species associated with this disease. These pathogens live in the intestinal tract of most avian species and under commercial conditions they spread rapidly to infect a high proportion of the flock, which makes their treatment and prevention very difficult. Bacteriophages (phages) are naturally occurring predators of bacteria with high specificity and also the capacity to evolve to overcome bacterial resistance. Therefore phage therapy is a promising alternative to antibiotics in animal production. This study tested the efficacy of a phage cocktail composed of three phages for the control of poultry infected with C. coli and C. jejuni. Moreover, it evaluated the effectiveness of two routes of phage administration (by oral gavage and in feed) in order to provide additional information regarding their future use in a poultry unit.ResultsThe results indicate that experimental colonisation of chicks was successful and that the birds showed no signs of disease even at the highest dose of Campylobacter administered. The phage cocktail was able to reduce the titre of both C. coli and C. jejuni in faeces by approximately 2 log10 cfu/g when administered by oral gavage and in feed. This reduction persisted throughout the experimental period and neither pathogen regained their former numbers. The reduction in Campylobacter titre was achieved earlier (2 days post-phage administration) when the phage cocktail was incorporated in the birds' feed. Campylobacter strains resistant to phage infection were recovered from phage-treated chickens at a frequency of 13%. These resistant phenotypes did not exhibit a reduced ability to colonize the chicken guts and did not revert to sensitive types.ConclusionsOur findings provide further evidence of the efficacy of phage therapy for the control of Campylobacter in poultry. The broad host range of the novel phage cocktail enabled it to target both C. jejuni and C. coli strains. Moreover the reduction of Campylobacter by approximately 2 log10cfu/g, as occurred in our study, could lead to a 30-fold reduction in the incidence of campylobacteriosis associated with consumption of chicken meals (according to mathematical models). To our knowledge this is the first report of phage being administered in feed to Campylobacter-infected chicks and our results show that it lead to an earlier and more sustainable reduction of Campylobacter than administration by oral gavage. Therefore the present study is of extreme importance as it has shown that administering phages to poultry via the food could be successful on a commercial scale.
Aims: Poultry meat is considered a major source of Campylobacter. This micro‐aerobic bacterium is commonly responsible for foodborne illness. This work focuses on the isolation of Campylobacter coli lytic bacteriophages (phages) against target C. coli strains. Methods and Results: A method involving the enrichment of free‐range chicken samples in a broth containing the target C. coli strains and salts (CaCl2 and MgSO4) was used for phage isolation. This method allowed the isolation of 43 phages that were active against 83% of the C. coli strains used in the isolation procedure. Approximately 65% of the phages were also effective against Campylobacter jejuni strains. Conclusions: The use of target pathogens in the phage isolation step improves the likelihood of detecting and isolating phages for the control of these specific strains. Significance and Impact of the Study: This technique will be valuable in the context of phage therapy for enriching for phages that are active against specifically identified strains of bacteria, for example from a food poisoning outbreak or epidemic strains resistant to multiple antibiotics. In these situations, using the conventional methods for searching for bacteriophages active for these particular strains can be a time‐consuming, if not an unsuccessful process. Using the isolation method described in this manuscript, the particular strains can be added to the enrichment broth increasing the probability of finding phages against them. Therefore, it will shorten the time needed for seeking phages able to lyse target strains, which in most of the cases, because of the rapid increase in antimicrobial‐resistant bacteria, is of crucial importance.
Aims: The purpose of this study was to identify an effective disinfectant for the inactivation of the bacteriophages (phages) being used in our laboratory, as published studies on phage inactivation are far from unanimous in their conclusions. Methods and Results: The phages studied were three closely related strains of Myoviridae and three strains of Siphoviridae. Three disinfectants which are used commonly in microbiology laboratories were evaluated: Virkon (1%), ethanol (75%) and sodium hypochlorite (2500 ppm available chlorine). The most effective of these was Virkon, which inactivated all six phages rapidly. Ethanol was effective against the Myoviridae but had little effect on the Siphoviridae. Sodium hypochlorite was the least effective of the disinfectants evaluated. Conclusions: The findings of this study demonstrate a wide diversity in the effectiveness of disinfectants tested for inactivation of phages. Significance and Impact of the Study: Of the disinfectants tested Virkon is the most suitable choice for those unable to carry out disinfection validation studies, or where a broad spectrum disinfectant against phages is required. All of the phages in this study showed resilience to inactivation by sodium hypochlorite, and therefore this disinfectant is an unwise choice for use against phage without first assessing its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.