This report, prepared for the Community Planning Study -Snowmass 2013 -summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted. OverviewBaryon Number, B, is observed to be an extremely good symmetry of Nature. The stability of ordinary matter is attributed to the conservation of baryon number. The proton and the neutron are assigned B = +1, while their antiparticles have B = −1, and the leptons and antileptons all have B = 0. The proton, being the lightest of particles carrying a non-zero B, would then be absolutely stable if B is an exactly conserved quantum number. Hermann Weyl formulated the principle of conservation of baryon number in 1929 primarily to explain the stability of matter [1]. Weyl's suggestion was further elaborated by Stueckelberg [2] and Wigner [3] over the course of the next two decades. The absolute stability of matter, and the exact conservation of B, however, have been questioned both on theoretical and experimental grounds. Unlike the stability of the electron which is on a firm footing as a result of electric charge conservation
Ultra-cold neutrons (UCN) are neutrons with energies so low they can be stored in material bottles and magnetic traps. They have been used to provide the currently most accurate experiments on the neutron life time and electric dipole moment. UCN can be produced in superfluid Helium at significantly higher densities than by other methods. The predominant production process is usually by one phonon emission which can only occur at a single incident neutron energy because of momentum and energy conservation. However UCN can also be produced by multiphonon processes. It is the purpose of this work to examine this multiphonon production of UCN. We look at several different incident neutron spectra, including cases where the multiphonon production is significant, and see how the relative importance of multiphonon production is influenced by the incident spectrum.
We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.
Solid deuterium (sD2) is used as an efficient converter to produce ultracold neutrons (UCN). It is known that the sD2 must be sufficiently cold, of high purity and mostly in its ortho-state in order to guarantee long lifetimes of UCN in the solid from which they are extracted into vacuum. Also the UCN transparency of the bulk sD2 material must be high because crystal inhomogeneities limit the mean free path for elastic scattering and reduce the extraction efficiency. Observations at the UCN sources at Paul Scherrer Institute and at Los Alamos National Laboratory consistently show a decrease of the UCN yield with time of operation after initial preparation or later treatment ("conditioning") of the sD2. We show that, in addition to the quality of the bulk sD2, the quality of its surface is essential. Our observations and simulations support the view that the surface is deteriorating due to a build-up of D2 frost-layers under pulsed operation which leads to strong albedo reflections of UCN and subsequent loss. We report results of UCN yield measurements, temperature and pressure behavior of deuterium during source operation and conditioning, and UCN transport simulations. This, together with optical observations of sD2 frost formation on initially transparent sD2 in offline studies with pulsed heat input at the North Carolina State University UCN source results in a consistent description of the UCN yield decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.