The precise value of the mean neutron lifetime, τ, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/-0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.
The observation of neutrons turning into antineutrons would constitute a discovery of fundamental importance for particle physics and cosmology. Observing the n−n transition would show that baryon number (B) is violated by two units and that matter containing neutrons is unstable. It would provide a clue to how the matter in our universe might have evolved from the B = 0 early universe. If seen at rates observable in foreseeable next-generation experiments, it might well help us understand the observed baryon asymmetry of the universe. A demonstration of the violation of B − L by 2 units would have a profound impact on our understanding of phenomena beyond the Standard Model of particle physics.Slow neutrons have kinetic energies of a few meV. By exploiting new slow neutron sources and optics technology developed for materials research, an optimized search for oscillations using free neutrons from a slow neutron moderator could improve existing limits on the free oscillation probability by at least three orders of magnitude. Such an experiment would deliver a slow neutron beam through a magnetically-shielded vacuum chamber to a thin annihilation target surrounded by a low-background antineutron annihilation detector. Antineutron annihilation in a target downstream of a free neutron beam is such a spectacular experimental signature that an essentially background-free search is possible. An authentic positive signal can be extinguished by a very small change in the ambient magnetic field in such an experiment. It is also possible to improve the sensitivity of neutron oscillation searches in nuclei using large underground detectors built mainly to search for proton decay and detect neutrinos. This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron oscillations, and suggests avenues both for theoretical investigation and for future improvement in the experimental sensitivity.
A fast handheld two-photon fiber-optic fluorescence endoscope for three-dimensional (3D) in vivo cellular imaging is developed. The compact handheld probe of the two-photon endoscope can simply be placed into contact with the target tissue to reveal clear 3D surface and subsurface histological images without biopsy. The new system has, to the best of our knowledge, the largest field of view (FOV) of 475 microm x 475 microm and a 3D imaging volume larger than 475 microm x 475 microm x 250 microm. A real-time two-photon fluorescence image is displayed at 0.4 mm(2)/s. The lateral and axial resolutions of the two-photon fluorescence endoscope are better than 1 and 14.5 microm, respectively.
Background:The neutron β-decay asymmetry parameter A 0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A 0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ g A /g V , which under assumption of the conserved vector current hypothesis (g V = 1) determines g A . Precise values for g A are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A 0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A 0 .
A new measurement of the neutron β-decay asymmetry A 0 has been carried out by the UCNA Collaboration using polarized ultracold neutrons (UCNs) from the solid deuterium UCN source at the Los Alamos Neutron Science Center. Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A 0 = −0.11954(55) stat (98) Precision measurements of neutron β decay are an essential ingredient in understanding the electro-weak interaction in the light quark sector. In particular the axial-vector weak coupling constant, g A , is an important input to understanding the spin and flavor structure of the nucleon [1,2] and is being actively studied in detailed lattice QCD calculations [3,4]. It also plays an important role in a variety of astrophysical processes, including solar fusion cross sections important for energy and neutrino production in the Sun [5].The angular distribution of emitted electrons from decays of a polarized neutron ensemble can be expressed as [6]where A(E) specifies the decay asymmetry for electron energy E, v ≡ βc is the electron velocity, P is the mean neutron polarization, and θ is the angle between the neutron spin and the electron momentum. can be expressed aswhere λ ≡ g A /g V is the ratio of the vector to axial-vector weak coupling constants. Combining g A with independent measurements of the Fermi coupling constant G F , the Cabibbo-Kobayashi-Maskawa matrix element V ud , and the neutron lifetime τ n allows a precision test of the consistency of measured neutron β-decay observables [7]. The ultracold neutron asymmetry (UCNA) experiment is the first experiment to use ultracold neutrons (UCNs) in a precision measurement of neutron decay correlations. Following the publication of our earlier results [7][8][9], the UCNA Collaboration implemented a number of experimental improvements that led to reductions in both statistical and systematic uncertainties. These improvements, described below, include enhanced UCN storage, improved electron energy reconstruction, and continuous monitoring of the magnetic field in the spectrometer. This refined treatment of the systematic corrections and uncertainties begins to address issues of consistency in the world data set for A 0 .The UCNA experiment ran in 2010 using the "thin window geometry D" as described in [7,9], and collected a total of 20.6 × 10 6 β-decay events after all cuts were applied. We used the UCN source [10] Copyright by the American Physical Society. Mendenhall, M. P. ; Pattie, R. W., Jr. ; Bagdasarova, Y. ; et al., Mar 25, 2013. "Precision measurement of the neutron beta-decay asymmetry," PHYSICAL REVIEW C 87(3): 032501.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.