Context
A reliable measure of population size is fundamental to ecology and conservation but is often difficult to obtain. The woylie, Bettongia penicillata, provides an example where ‘getting the numbers right’ has important implications in verifying and quantifying the recent unexpected, rapid and substantial declines across much of its range. Initial estimates prompted a conservation-status upgrade for the species to Endangered by the Australian Government. The present paper constitutes the foundational paper addressing the first steps of a decline diagnosis framework intended to identify the causes of the recent declines.
Aims
To verify whether the declines in woylie trap-capture rates are representative of population change; better quantify the size of the largest woylie populations; and review what is understood about the ecology of the woylie and identify key knowledge gaps that may be relevant to identifying the causes of the recent declines.
Methods
Monitoring data from live-cage trapping (transects and grids), sandpads, woylie diggings and nest-density surveys and spotlighting were collated. Population measures derived from trapping data included capture rates, number of individuals, abundance estimates based on capture–mark–recapture modelling and density using spatially explicit capture–recapture models (SECR).
Key results
The declines in woylie trap-capture rates were verified as real population declines and corresponded closely with other measures of abundance derived from the same trapping data as well as with independent measures. A 95% decline occurred in the largest extant woylie populations (in the Upper Warren region, Western Australia) between 2002 and 2008. At a species level, woylies declined ~90% (1999–2006), from a peak of ~200 000 individuals in 1999.
Conclusions
An accurate formal conservation status is an important factor in promoting the conservation of a species. It is recommended that the woylie be considered for Critically Endangered status under the Australian EPBC Act.
Implications
Adequate and effective monitoring of species is critical to detecting and quantifying population changes in a timely manner. Having an accurate measure of population size can have a significant impact on the effectiveness of conservation and management efforts.
Summary
Feral cat control using aerial broadcasting of toxic baits continues to be used in the rangelands of Western Australia. The effectiveness of these operations has sometimes been compromised by different environmental factors that affect prey and cat numbers. This study demonstrates that the ratio of cats to their preferred prey (small mammals) can be used to predict the most effective time to bait. The regular baiting of three conservation sites offered an opportunity to study the relationship between feral cat abundance, the abundance of their prey and ingestion of toxic baits. Peron Peninsula on the mid‐west coast, Lorna Glen station in the northern Goldfields and the central Gibson Desert of Western Australia are sites where cat control using toxic baits has been routinely applied over the last 15 years. We postulated that bait ingestion by cats was linked to the availability of live prey. Small mammal abundance (capture rates in pit‐fall traps) and relative cat abundance (based on daily track counts) were assessed at these sites and the data used to produce a predator‐prey ratio index (PPRI). We used generalised linear mixed models to test the effect of prey abundance, prebaiting cat abundance and PPRI on baiting efficacy (BE). The best model for predicting efficacy of baiting contained only PPRI. This simple model was able to predict baiting success over the entire range of outcomes, from highly successful ( >75% cat reduction) to unsuccessful (0% cat reduction). The ability to predict feral cat BE in advance of planned toxic baiting operations will provide a valuable tool for wildlife managers involved in cat control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.