High-speed machining (HSM) has had a large impact on the design and fabrication of aerospace parts and HSM techniques have been used to improve the quality of conventionally machined parts as well. Initially, the trend toward HSM of monolithic parts was focused on small parts, where existing machine tools have sufficient precision to machine the required features. But, as the technology continues to progress, the scale of monolithic parts has continued to grow. However, the growth of such parts has become limited by the inability of existing machines to achieve the tolerances required for assembly due to the long-range accuracy and the thermal environment of most machine tools. Increasing part size without decreasing the tolerances using existing technology requires very large and very accurate machines in a tightly controlled thermal environment. As a result, new techniques are needed to precisely and accurately manufacture large scale monolithic components. Previous work has established the fiducial calibration system (FCS), a technique, which, for the first time provides a method that allows for the accuracy of a coordinate measuring machine (CMM) to be transferred to the shop floor. This paper addresses the range of applicability of the FCS, and provides a method to answer two fundamental questions. First, given a set of machines and fiducials, how much improvement in precision of the finished part can be expected? And second, given a desired precision of the finished part, what machines and fiducials are required? The achievable improvement in precision using the FCS depends on a number of factors including, but not limited to: the type of fiducial, the probing system on the machine and CMM, the time required to make a measurement, and the frequency of measurement. In this paper, the sensitivity of the method to such items is evaluated through an uncertainty analysis, and examples are given indicating how this analysis can be used in a variety of cases.
The failure strain level in a single point incremental forming (SPIF) process is found to be much higher than that in the traditional stamping process. Based on the assumption that forming limits in SPIF are dominated by fracture failure, the Oyane ductile fracture criterion is introduced in this paper to predict the fracture initiation site, and hence the forming limit, given the stress and strain values obtained from finite element simulations. The predicted results compare well with those obtained from the SPIF experiments. Furthermore, this fracture criterion is used to study the size effects in SPIF. Analytical equations are derived to comprehensively consider the effects of design and process parameters on sheet formability including sheet thickness, tool diameter, and incremental depth. Previously published experimental data is used to verify the feasibility of the proposed size effect equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.