Nondestructive measurement of microscale features remains a challenging metrology problem. For example, to assess a high aspect ratio small hole it is currently common to cut a cross section and measure the features of interest using an atomic force microscope, scanning probe microscope, or scanning electron microscope. Typically, these metrology tools may be suitable for surface finish measurement but often lack the capability for dimensional metrology. The aim of this article is to discuss the development of a high aspect-ratio microscale probe for measurement of microscale features. A 700:1 high aspect ratio probe shank is fabricated with a 7 m diameter, and attached at one end to an oscillator. The oscillator produces a standing wave in the oscillating probe shank as opposed to conventional probes that use a microscale sphere on the end of a comparatively rigid shank. As a result of the standing wave formed in steady state vibration, the free end of the shank generates an amplitude of oscillation greater than the probe shank diameter. Thus, the probe does not require a spherical ball to serve as the contact point and simply uses the contact diameter of the free end of the vibrating shank. This methodology is referred to as a virtual probe tip. The virtual probe tip in conjunction with a nanopositioning scanner is used to measure surface profile measurements over traverse lengths of 130 m. In this article, results from profiles of a 500 nm step height and a ruby sphere of diameter 1 mm are presented. Experiments in this article indicate the ability to repeatedly resolve surface features of less than 5 nm while maintaining bandwidths greater than 1 kHz. Furthermore, adhesion problems often encountered with micrometer scaled probes were not observed during profile measurements with this virtual probe.
We have performed a round-robin study of surface irregularity measurements of a free-form toroidal window. The measurement tools were a Leitz scanning CMM at Optimax Systems, Inc., an UltraSurf, a non-contact measuring system at OptiPro Systems, a Zeiss scanning CMM at OptiPro Systems, a F25 micro-CMM at Carl Zeiss Industrial Metrology, and an ASI(Q) TM at QED Technologies. Each instrument resulted in a 2.5D surface error map. The measurements were compared with multiple analysis settings. The different analysis settings removed some low frequency height errors, which varied amongst the measurements. This highlights the need for more study to determine the reasons for the differences in the low frequency errors. With the low frequency errors removed, the measurements compared very well, to within 0.2 µm rms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.