Abstract. This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier. Preamble Editors' note for the second editionThe first edition of this White Paper was released in 2012. In the current (second) edition, the science case for the EIC is further sharpened in view of the recent data from BNL, CERN and JLab experiments and the lessons learnt from them. Additional improvements were made by taking into account suggestions from the larger nuclear physics community including those made at the EIC Users Group meeting at Stony Brook University in July 2014, and the QCD Town Meeting at Temple University in September 2014.Abhay Deshpande, Zein-Eddine Meziani and Jian-Wei Qiu November 2014 Editors' note for the third edition Since the 2nd release of this White Paper, the NSAC's Long Range Plan (2015) was successfully completed. The EIC is a major recommendation of the US nuclear science community. In the current release (version 3) we have fixed some minor remaining errors in the text, and have added a few new references. While the core science case for the EIC remains the same, the machine designs of both options, the eRHIC at BNL and the JLEIC at JLab keep evolving. In this 3rd release of the EIC White Paper instead of making substantial changes to the machine design sections (5.1 and 5.2), we give references to the most recent machine design documents.
We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. Theqq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron coupling). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of shadowing at x ≤ 10 −2 due to the fact that photon fluctuations (containing a gluon) are heavier than in the case of quark shadowing. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of aqqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta. Also the Landau-Pomeranchuk suppression for gluon radiation of a quark propagating through a nucleus turns out to be smaller than predicted by perturbative QCD.
This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark–Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton–proton, proton–nucleus and nucleus–nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus–nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7 Framework Programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.