There are several ecological scales developed both for phytoindication of ecological factors and plant ecomorphs. Among them, the scales of Ellenberg and Tsyganov are the most commonly used. L. G. Ramensky and P. S. Pogrebnyak had developed a phytoindication method; they also were founders of first ecological scale of plant species in relation to various environmental factors. One of first ecomorph systems was developed by Alexander Lyutsianovich Belgard. In 1947, Belgard presented a tabular ecomorph system in his doctoral dissertation, and later in monograph “Forest vegetation of the South-East of Ukraine”. In the system he used abbreviated Latin names applying terminology proposed in the late 19th century by Dekandol, Warmin and other authors. He considered ecomorphs as adaptations of plants to environmental conditions in forests of the steppe zone of Ukraine where forest cenoses are exposed to processes of steppization, prairification, swamping, salinization, and thus clarification of relationships between forest, meadow, steppe, marsh and weed plant species was essential. Therefore, development and introduction of cenomorph terms as “adaptation of plant species to phytocenosis as a whole” were an absolutely new contribution to the concept of ecomorph system. In environmental factor scales of Ellenberg and other authors, environment characteristics based on phytoindication were underlined; in the Belgard Plant Ecomorph System, ecomorphs reflect ability of plant species to grow within certain ranges of a given factor. These approaches are quite comparable, and ecomorphs of the Belgard system correspond to certain grades of the Ellenberg and Tsyganov scales. The Belgard ecomorph system has been applied in a number of fundamental and applied works on plant ecology and phytocenology. It is convenient for characterizing ecological features of plant species growing in the steppe zone with a wide range of environment factors such as lighting, humidity, and soil richness. Other authors have expanded and supplemented the Belgard Plant Ecomorph System based on its strategy. A number of ecomorphs was introduced; they reflect intermediate or extreme gradations of factors. A new cenomorph – silvomargoant – has been proposed by the authors of this paper.
Floodplain ecosystems take on the role of active areas of biodiversity and provide many “ecosystem services”, as evidenced by a number of European scientific references. A biodiversity analysis of river floodplains in six European countries within the temperate zone has shown that the floodplains are habitats with a high-level of structural and functional dynamics. The level of their conservation reflects the floristic diversity of forest territories, which is especially important for subarid areas. Recently, a comparison of bioecological characteristics of flora in floodplain forest areas and treeless territories was conducted on the floodplain landscapes of a subarid region of Europe. The valley-terraced landscape of the Samara River, a tributary of the Dnieper can serve as a reference site of native plant complexes of subarid territory in Eastern Europe. Despite long-term anthropogenic transformation, the landscape has retained a significant phytodiversity level. The flora of the Samara River area includes 887 plant species. Of these, 177 species belonging to the rare and endangered categories. The floodplain landscape is the richest in species and most diverse part of this complex. The flora of the Samara floodplain includes 728 species (including 132 rare ones), of which 631 grow in forest communities, and 487 – in anthropogenically transformed, treeless floodplain areas. As part of the forest flora, the number of tree and shrubby species, scyophytes, hygrophytes, and megatrophs significantly increases compared to treeless sites, and the number of ruderal plant species decreases. The floristic composition of the floodplain forests of the subarid region is much richer and more diverse than the flora of the treeless floodplain areas, and this should encourage measures for their protection and restoration. Afforestation of floodplain territories within the steppe zone of Ukraine should be a priority in comparison with other landscapes. For the protection of the flora studied, a scientific justification for creating the National Park "Samara Bor" was prepared. Under the conditions of anthropogenic and climatic impact, this article is of great global importance for attracting the attention of specialists, authorities and society to the protection and restoration of biodiversity in the most valuable landscapes.
The creation of reservoirs in river valleys for the accumulation of fresh water has been and remains an important issue around the world. This process has both positive and negative consequences for people and nature. Significant changes in the regime of rivers and their valleys, flooding of meadows and forests, flooding of soils and changes in the composition of flora and fauna of adjacent territories are taking place. In this article, we consider the restoration of the biodiversity of a site of disturbed lands after the creation of one of the first large reservoirs in Europe – the Dnieper (Zaporozhe) on the River Dnieper, which has existed since 1933. The territory of the Samara floodplains was formed on the floodplain of the mouth of the Samara River, as a result of which the territories of various forest, meadow and bog biotopes were flooded. For almost 90 years, new biotopes have been developing, and populations of plant and animal species, especially waterfowl, have been renewed and enriched. In the conditions of climate change and anthropogenic pressure, the existence of this territory has fallen into question. To control the conservation of biodiversity, it is necessary to apply various management methods, one of which is creation of nature reserves. The article presents the results of a complex of scientific studies that were carried out during the zoning of the regional park Samara Plavni to improve the management of the protection of water areas and river banks. We have investigated: hydrological features, species diversity of the flora and coenotic diversity of the vegetation, fauna of aquatic invertebrates, and terrestrial vertebrates. Zoning of the Regional Landscape Park was based on the composition of stable components of ecosystems. When applying the protected regime in different zones, conditions will be created for the preservation of habitats of species, including those protected in Europe: higher plants (Senecio borysthenicus (DC.) Andrz. ex Czern., Tragopogon borystenicus Artemcz.), reptiles (Emys orbicularis (Linnaeus, 1758), Vipera renardi (Christoph, 1861)), birds (Aythya ferina (Linnaeus, 1758), Vanellus vanellus (Linnaeus, 1758), Haematopus ostralegus Linnaeus, 1758, Numenius arquata (Linnaeus, 1758), Alcedo atthis (Linnaeus, 1758), Lanius excubitor (Linnaeus, 1758)), mammals (Lutra lutra (Linnaeus, 1758)). Such changes would increase the implementation of the reproductive potential of all species without exception in the studied ecosystems.
Results of non-native flora surveys on Samara Dniprovska River valley within the designed National Park «Samarsky Bir» were analyzed in the paper. Scientific justification on first stage creation of the national-level National Park «Samarsky Bir» was prepared in 2012. Its area included the main park area with floodplain, arena and gully landscapes of the rivers Samara and Oril interstream. List of vascular plant species on floodplain, arena and gully habitats of Prisamar'ya counted 887 species. They are classified as 5 divisions, 6 classes, 108 families, 429 genera. This article presents a list of non-native flora fraction with bioecological characteristic of the plant species. The surveys were conducted by conventional methods on vascular flora studying. Analysis of the main plant ecomorphs was carried out by A. L. Belgard ecomorph system (1950). Invasion of plant species in the steppe zone of Ukraine has a long history complicated by significant anthropogenic transformation of the territory. We investigated the status of non-native plants, their ecomorphs, and tendency to invasiveness on the territory of National Park «Samarsky Bir» designed. Presence of 195 adventitious vascular plant species belonging to 48 families was determined. Of them, 7 families with the greatest abundance of non-native species contained 113 taxa (58 % of the total); 20 families were represented with 2–7 advents, and 20 families contained only 1 non-native species. Thus, today the share of non-native species in the vascular flora of the region accounted for nearly 22 %. Most of adventitious species are mesoxerophytes and xeromesophytes. In a cenomorphic relationship, vegetation being ruderal on the territory of Ukraine is dominated in composition of non-native flora. Within the total number of adventitious species, archaeophytes amount up 44 %, whereas neophytes come up to 56 %. The greatest abundance of adventitious species has been found in Brassicaceae, Asterasea and Poaceae families (15 %, 12 %, and 11 % of the total, respectively). 119 non-native vascular plant species were found in the steppe cenoses, 79 species in the gully and watershed forests, 90 species in floodplain forests, and 52 species on the territory of the sandy terrace. Among all the non-native species, 28 species have been identified as invasive, and there was a trend to increased invasiveness of some species in recent years. Among heterogenous species 12 of them were identified as invasive, and there was a tendency to increase theinvasiveness of some species in recent years. The analysis provided on non-native flora in the National Park evidences significant anthropogenic transformation of the territory; that requires establishment of appropriate regime on protection of this important ecological object.
Coastal tree and shrub vegetation is an important component of river catchment ecosystems, it performs a wide range of ecological functions and ecosystem services; their effectiveness largely depends on species richness and diversity. Coastal habitats are among the main centers of biodiversity, but they often perform a function of centers of active anthropogenic activity and undergo significant transformation. The creation of a cascade of the Dnipro reservoirs (Kamenske, Zaporizhia (Dniprovske), Kakhovske reservoirs) has already caused the transformations of the Dnipro river flow regime and all biological components of the aquatic and wetland ecosystems in the Northern steppe subzone of Ukraine. In the current period, on the background of global climate change, dendroflora transformation on this territory is enhanced by the anthropogenic impact of industrial cities (Kamenske, Dnipro, Zaporizhzhia). Assessment of dendroflora diversity in coastal zones was carried out within the protective strip of the Dnipro river (100 m): in native phytocenoses; semi-native vegetation associations; water protection plantings; public green spaces (excluding private plots and collections). It was determined that the dendroflora in the coastal protective strips of the Dnipro river within the Northern steppe subzone of Ukraine is characterized by significant taxonomic diversity and includes 184 plant species (excluding their decorative forms) belonging to 37 families. The highest species saturation was typical for the following families: Rosaceae (40 species), Salicaceae (23 species), Fabaceae (11 species), and Oleaceae (9 species). The dendroflora consists of 61 tree species, 78 shrubby species (including lianas) and 45 species that can be represented by both tree and shrubby forms. The highest species richness was recorded in public recreational green spaces: 181 species (98% of the total species number). The coastal tree and shrubby associations included 8 species that belong to rarity ones (the Red List of the Dnipropetrovsk region). The coenomorphic spectrum of dendroflora in coastal protective strips is dominated by culturants (70.7%), autochthonous silvants (19%), stepants (3.2%), silvomargoants (species of forest margins, 4.3%), pratants (1.6%), and paludants (1.1%). There is the dominance of mesophytes (55%) and species with a wide range of adaptations to the humidification conditions of hygrotopes in hygrospectrum (22.8%); mesotrophic species among trophomorphs (53.8%), and sciogeliophytes in heliospectrum (57%). In the dendroflora of the coastal zones of the Dnipro river, alien species completely predominated (71% of the species composition). Among them, 6.9% were invasive, mainly belonging to neophytes. In the current period, an increase in invasive activity is recorded in another 5.3% of adventive (potentially invasive) species. The significant taxonomic and ecomorphic diversity of dendroflora in the coastal zones of the Northern steppe subzone of Ukraine is associated with ecotone effects, active processes of the territory urbanization, and the use of a wide range of alien ornamental species in public green spaces of cities. It is advisable to increase the share of autochthonic and rare species participation in the composition of coastal protective and recreational plantings, which will contribute to the preservation of their gene pool and increase the native dendrological diversity in the Dnipro river basin. To reduce the threats of phytoinvasions, it is necessary to: i) prohibit the use of invasive species in the restoration of native floodplain forests; ii) conduct a preliminary assessment of environmental risks from the use of alien species; iii) monitor existing plantings with their participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.