Although estrogen is implicated in the regulation of cell growth and differentiation in many organs, the exact mechanism for liver regeneration is not completely understood. We investigated the effect of estrogen on liver regeneration in male and female Wistar rats after 70% partial hepatectomy (PHx) and performed immunohistochemistry, western blotting and Southwestern histochemistry. 17β-estradiol (E2) and ICI 182,780 were injected into male rats on the day before PHx. The proliferating cell nuclear antigen (PCNA) labeling index reached a maximum at 48 hr after PHx in males, and at 36 hr in females and E2-treated male rats. Estrogen receptor α (ERα) was expressed in zones 1 and 2 in male rats, but was found in all zones in female rats. Interestingly, ERα was not detected at 6–12 hr after PHx but was found at 24–168 hr in male rats. However, ERα expression was found at all sampling time-points in female and E2-treated male rats. The activity of estrogen responsive element binding proteins was detected from 12 hr after PHx in male rats but was found from 6 hr in female and E2-treated male rats. ERα was co-expressed with PCNA during liver regeneration. These results indicate that estrogen may play an important role in liver regeneration through ERα.
Fatty liver is common in men and post-menopausal women, suggesting that estrogen may be involved in liver lipid metabolism. The aim of this study is to be clear the role of estrogen and estrogen receptor alpha (ERα) in fat accumulation during liver regeneration using the 70% partial hepatectomy (PHX) model in male, female, ovariectomized (OVX) and E 2-treated OVX (OVX-E 2) rats. Liver tissues were sampled at 0-48 hr after PHX and fat accumulation, fatty acid translocase (FAT/CD36), sterol regulatory element-binding protein (SREBP1c), peroxisome proliferator-activated receptor α (PPARα), proliferative cell nuclear antigen (PCNA) and ERα were examined by Oil Red O, qRT-PCR and immunohistochemistry, respectively. Hepatic fat accumulation was abundant in female and OVX-E 2 compared to male and OVX rats. FAT/CD36 expression was observed in female, OVX and OVX-E 2 at 0-12 hr after PHX, but not in male rats. At 0 hr, SREBP1c and PPARα were elevated in female and male rats, respectively, but were decreased after PHX in all rats. The PCNA labeling index reached a maximum at 36 hr and 48 hr in OVX-E 2 and OVX rats, respectively. ERα expression in OVX-E 2 was higher than OVX at 0-36 hr after PHX. In conclusion, these results indicated that estrogen and ERα might play an important role in fat accumulation related to FAT/CD36 during early phase of rat liver regeneration.
Mucosal immune dysregulation associated with T cells plays a critical role in the development of inflammatory bowel diseases (IBD). However, the definite significances of these cells in IBD still remain unclear. Therefore, we investigated the population and expression of CD4+CD161+ T cells in the colonic lamina propria mononuclear cells (LPMCs) in patients with IBD by analyses using flow cytometry and immunohistochemistry. Interleukin-10 (IL-10) mRNA levels in both LPMCs and CD4+ T cells in lamina propria (LP-CD4+ T cells) were measured using a real-time quantitative reverse transcription-polymerase chain reaction. IL-10 production was investigated with immunohistochemistry. The results revealed that the population of CD4+CD161+ T cells was significantly decreased in active ulcerative colitis (UC) compared with inactive UC (P < 0.05). The CD4+CD161+ T cell population was inversely correlated with disease activity in patients with UC (r = −0.6326, P = 0.0055), but there was no significant correlation in those with Crohn’s disease. Over-expression of IL-10 mRNA in both LPMCs and LP-CD4+ T cells were detected in active UC. Immunohistochemistry revealed decreased frequency of CD161+ cells and increased IL-10 positive cells in active UC. The frequency of CD4+CD161+ T cells and IL-10 expression was supposed to be associated with the pathological status of mucosal immunoregulation in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.