The role of graphene in enabling deoxidation of silver nanostructures, thereby contributing to enhance plasmonic properties and to improve the temporal stability of graphene/silver hybrids for both general plasmonic and meta‐materials applications, as well as for surface enhanced Raman scattering (SERS) substrates, is demonstrated. The chemical mechanism occurring at the graphene–silver oxide interface is based on the reduction of silver oxide triggered by graphene that acts as a shuttle of electrons and as a kind of catalyst in the deoxidation. A mechanism is formulated, combining elements of electron transfer, role of defects in graphene, and electrochemical potentials of graphene, silver, and oxygen. Therefore, the formulated model represents a step forward from the simple view of graphene as barrier to oxygen diffusion proposed so far in literature. Single layer graphene grown by chemical vapor deposition is transferred onto silver thin films, a periodic silver fishnet structure fabricated by nanoimprint lithography, and onto silver nanoparticle ensembles supporting a localized surface plasmon resonance in the visible range. Through the study of these nanostructured graphene/Ag hybrids, the effectiveness of graphene in preventing and reducing oxidation of silver plasmonic structures, keeping silver in a metallic state over months at air exposure, is demonstrated. The enhanced and stable plasmonic properties of the silver‐fishnet/graphene hybrids are evaluated through their SERS response for detecting benzyl mercaptane.
Surface‐plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio‐sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface‐plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two‐dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. The analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.
We demonstrate for the first time a fast and easy nanoimprint lithography (NIL) based stacking process of negative index structures like fishnet and Swiss-cross metamaterials. The process takes a few seconds, is cheap and produces three-dimensional (3D) negative index materials (NIMs) on a large area which is suitable for mass production. It can be performed on all common substrates even on flexible plastic foils. This work is therefore an important step toward novel and breakthrough applications of NIMs such as cloaking devices, perfect lenses and magnification of objects using NIM prisms. The optical properties of the fabricated samples were measured by means of transmission and reflection spectroscopy. From the measured data we retrieved the effective refractive index which is shown to be negative for a wavelength around 1.8 µm for the fishnet metamaterial while the Swiss-cross metamaterial samples show a distinct resonance at wavelength around 1.4 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.