Thermal stress weathering is now recognized to be an active and significant geomorphological process on airless bodies. This study aims to understand the key factors governing thermal stresses in rocks on airless bodies through extensive numerical calculations and analytic analyses. Microscopic (grain‐scale) thermal stresses are driven primarily by the maximum diurnal temperature variation at said depth. Macroscopic (rock‐scale) thermal stresses are more complex. For rock sizes larger than the thermal skin depth, macroscopic thermal stresses are driven primarily by second (and higher) order spatial gradients of temperature. For rock sizes smaller than the thermal skin depth, macroscopic thermal stresses are primarily driven by the ratio of rock size to thermal skin depth. Additionally, scaling relations for diurnal surface temperature variation, time‐rate‐of‐change of surface temperature, as well as peak microscopic (grain‐scale) and macroscopic (rock‐scale) thermal stresses are derived to provide a more accessible modeling tool. These scaling relations are remarkably accurate when compared to both the numerical calculations as well as three‐dimensional finite element calculations. The model formulation, results, and scaling relations provided here allow the estimation of diurnal temperatures and thermal stresses on rocks of various size and materials on airless bodies at any orbital distance with a broad spectrum of spin rates. Lastly, we postulate and confirm that there is a critical spin rate where macroscopic thermal stresses will be greatest.
The Sandia Fracture Challenges provide the mechanics community a forum for assessing its ability to predict ductile fracture through a blind, round-robin format where mechanicians are challenged to predict the deformation and failure of an arbitrary geometry given experimental calibration data. The Third Challenge, issued in 2017, required participants to predict fracture in an additively manufactured 316L stainless steel tensile-bar configuration containing through holes and internal cavities that could not have been conventionally machined. The volunteer participants were provided extensive materials data, from tensile tests of specimens printed on the same build tray to electron backscatter diffraction maps of the microstructure and micro-computed tomography scans of the Challenge geometry. The teams were asked to predict a number of quantities of interest in the response, including predictions of variability in the resulting fracture response, as the basis for assessment of the predictive capabilities of the modeling and simulation strategies. This paper describes the Third Challenge, compares the experimental results to the predictions, and identifies successes and gaps in capabilities in both the experimental procedures and the computational analyses to inform future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.