Water resources in the Middle East region are becoming scarce, while millions of people already do not have access to adequate water for drinking and sanitary purposes. Water resources depletion has become a significant problem in this region that is likely to worsen. Current research by remote sensing analysis indicates a descending trend of water storage in the Middle East region, where agriculture plays a crucial role in socio-economic life. This study introduces an approach quantifying water depletion in the Middle Eastern countries, which are being challenged in the management of their water resources. Furthermore, this paper presents results of a survey assessing the status of water use and supply in Middle Eastern countries and outlines some potential remedies. Specifically, Iran's water use is evaluated and compared with its neighbors'. The water equivalent anomaly (WEA) and total water storage (TWS) depletion are two indexes of water scarcity calculated for Middle Eastern countries surveyed herein. Our analysis reveals that Lebanon, Syria, Iraq, and Iran are countries with very negative water scarcity indexes. These estimates prove that international cooperation is needed to manage available regional water resources and reverse depletion of natural water sources. It is demonstrated herein that virtual water trade can help remediate regional water shortage in Middle Eastern countries.
This study's objective is to assess the potential impact of climate change on an example underdesign hydropower system in the Karkheh River basin, Iran. Based on three water resources performance criteria (reliability, resiliency, and vulnerability), a novel framework was proposed to interpret and cope with the uncertainties associated with such assessments. The results demonstrated the acceptable performance of the system in most months, while there were certain signs for rare low-inflows, and consequently low hydropower generated by the system, due to the climate change. It was found that in terms of these three criteria, the best performances in the climate-change condition occurred in May (80% reliability), December (45% resiliency), and April (19% vulnerability). Yet the worst performances occurred in September (2% reliability), July and August (0% resiliency), and in October (39% vulnerability). These results indicated that the reliability and resiliency of the system would be improved under the climate change condition, while due to the increase of low-inflow incidences, the vulnerability of the system would increase. This suggests that, although the system may not face frequent failures, severe blackouts may occur. With timely consideration of future climatic conditions and appropriate adaptive actions, including additional backup systems for reliable and safe electricity generation, future undesired conditions can be avoided in the basin. also have a higher rate of energy demand per capita (Vörösmarty et al. ). Nevertheless, the process of fossil fuel formation takes millenniums, thus making them limited or 591
Lake Urmia, the twentieth largest lake in the world, is the most valuable aquatic ecosystem in Iran. The lake water level has decreased in recent years due to human activities and climate change. Several studies have highlighted the significant roles of climatic and anthropogenic factors on the shrinkage of the lake. Management policies for water resources harvesting must be adopted to adapt to climate change and avoid the consequent problems stemming from the drought affecting Lake Urmia, and rationing must be applied to the upstream water demands. This study analyzes strategies and evaluates their effectiveness in overcoming the Urmia Lake crisis. Specifically, system dynamics analysis was performed for simulating the water volume of Lake Urmia, and the Hadley Centre coupled model was applied to project surface temperature and precipitation for two future periods: 2021–2050 and 2051–2080. Six management scenarios were considered for decreasing the allocation of agricultural water demand corresponding to two options: (1) one-reservoir option (Bukan reservoir only), and (2) six-reservoir option. The net inflow of Urmia Lake was simulated for the two future periods with the IHACRES model and with artificial neural network models under the six management scenarios. The annual average volumes of Lake Urmia would be 30 × 109 and 12 × 109 m3 over the first and second future periods, respectively, without considering the management scenarios. The lake volumes would rise by about 50% and 75% for the first and second periods, respectively under the management scenarios that involve strict protective measures and elimination of the effect of all dams and their reservoirs. Implementing strict measures would increase the annual average lake volume to 21 × 109 m3 in the second period; yet, this volume would be less than the long-term average and strategic volume. The human water use would be completely eliminated under Scenario 6. Nevertheless, Lake Urmia would experience a considerable loss of storage because of drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.