d Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM-EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM-EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations.
Random causes are vital part of every process in manufacturing and nonmanufacturing environments, and these do not affect the product features. Special causes, on the other hand, come because of some burden(s) in a process and requires special attention; otherwise, it ruins the products excellence. Special causes are categorized into small, moderate, and large shifts and are handled by statistical quality control charts. The Shewhart control chart is well known for large shifts, while the cumulative sum and exponentially weighted moving average are more effective in detecting small to moderate shifts. However, in practice, many processes require the simultaneous monitoring of both the small to the large shifts. In this study, we have designed an adaptive EWMA for dispersion parameter in connection with Huber and Tukey's bisquare functions. The performance measures used in this study include average run length, extra quadratic loss, relative average run length, and performancecomparison index. We have observed that the study proposals are good competitors to the other counter parts for an efficient monitoring of shifts of varying amounts. An illustrative example using real data is given to demonstrate the implementation of the study proposal.
The examination of product characteristics using a statistical tool is an important step in a manufacturing environment to ensure product quality. Several methods are employed for maintaining product quality assurance. Quality control charts, which utilize statistical methods, are normally used to detect special causes. Shewhart control charts are popular; their only limitation is that they are effective in handling only large shifts. For handling small shifts, the cumulative sum (CUSUM) and the exponential weighted moving average (EWMA) are more practical. For handling both small and large shifts, adaptive control charts are used. In this study, we proposed a new adaptive EWMA scheme. This scheme is based on CUSUM accumulation error for detection of wide range of shifts in the process location. The CUSUM features in the proposed scheme help with identification of prior shifts. The proposed scheme uses Huber and Tukey bisquare functions for an efficient shift detection. We have used average run length (ARL) as performance indicator for comparison, and our proposed scheme outperformed some of the existing schemes. An example that uses real‐life data is also provided to demonstrate the implementation of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.