Purpose: The objective of this study was to synthesize and statistically optimize dimethyl fumarate (DMF) loaded solid lipid nanoparticles (SLNs) for better management of multiple sclerosis (MS).Methods: SLNs were formulated by hot emulsion, ultrasonication method and optimized with response surface methodology (RSM). A three factor and three level box-behnken design was used to demonstrate the role of polynomial quadratic equation and contour plots in predicting the effect of independent variables on dependent responses that were particle size and % entrapment efficiency (%EE).Results: The results were analyzed by analysis of variance (ANOVA) to evaluate the significant differences between the independent variables. The optimized SLNs were characterized and found to have an average particle size of 300 nm, zeta potential value of -34.89 mv and polydispersity index value < 0.3. Entrapment efficiency was found to be 59% and drug loading was 15%. TEM microphotograph revealed spherical shape and no aggregation of nanoparticles. In-vitro drug release profile was an indicative of prolonged therapy. In-vivo pharmacokinetic data revealed that the relative bioavailability was enhanced in DMF loaded SLNs in Wistar rats.Conclusion: This study showed that the present formulation with improved characteristics can be a promising formulation with a longer half-life for the better management of MS.
Ojha et al.: Development of Dimethyl Fumarate-loaded Chitosan Nanoparticles The aim of the present study was to access the potential of dimethyl fumarate-loaded chitosan polymeric nanoparticles for the management of multiple sclerosis. Dimethyl fumarate-loaded chitosan nanoparticles were prepared by polyelectrolyte complex coaservation technique. The prepared nanoparticles were characterized and found to have an average particle size of 324 nm, zeta potential of-34.85 mV and a poly dispersity index of 0.367. The entrapment effi ciency was found to be 65.36 % and the drug loading was 28 %. The formulation's in vitro drug release profi le and stability parameters were also evaluated. Cumulative percent drug release was found to be 84 % up to 24 hours and the formulation was found to be stable at 28° for 90 days. In vitro neuroprotective effect of the nanoformulation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human neuroblast SH-SY5Y cells and the treated cells showed improved cell viability under hydrogen peroxide-induced cell apoptosis. In vivo cuprizone model for multiple sclerosis in rodents also confi rmed these fi ndings by showing a signifi cant increase in locomotion score.
Objective: The present research was designed to produce methylprednisolone containing chitosan-based nanoparticles using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) for optimization.
Methods: Nanostructures were prepared using the ionic gelation method with screened process parameters. According to the design, methylprednisolone chitosan-based nanoparticles (MCSNPs) were optimized using factors like methylprednisolone concentration, stirring speed and temperature whereas particle size, zeta potential and % encapsulation efficiency as responses. From the observed values of responses with confirmation location and desirability, the predicted values were very close to the observed values.
Results: Observed values for the optimized formulation have a particle size of 243±2.33 nm with an encapsulation efficiency of 79.3±7.2%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles. Methylprednisolone was released in vitro in a sustained manner for about 24 h in simulated colonic fluid pH 7, pH 7.8 (Fasted state) and phosphate buffer pH 7.4, when compared to simulated colonic fluid at pH 6 (Fed state). Optimized MCSNPs followed Korsmeyer peppas kinetics with drug release mechanism as anomalous transport.
Conclusion: Application of Box-Behnken design and Response Surface Methodology using Design Expert software was successfully used in the optimization of methylprednisolone loaded chitosan-based nanoparticles with high encapsulation efficiency.
Wood is a wide flexible material appreciated extremely for its cost-effectiveness, great quantity, and biocompatibility. In addition, naturally existing materials possess prominent biomedical applications, and they can withstand efficiently when compared to other materials like glass, steel, and plastics. The present study revealed the prepared chitosan, silver nanoparticles incorporated with Borassus flabellifer trichome, and fabrication of Prosopis juliflora wood-based biomaterial. A characterization study was done by UV-visible spectroscopic analysis, FTIR analysis, and SEM analysis expressing and confirming a significant characteristic and morphological property of the prepared biomaterial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.