Type 2 diabetes (T2D) is a complex disease with an elusive link between its molecular aetiology and clinical presentation. Although, the role of visceral adipose tissue in insulin-resistance and T2D is known, limited information is available on the role of peripheral-subcutaneous adipose tissue especially in Asian Indians. In this microarray-based study of diabetic and normal glucose tolerant Asian Indians, we generated the transcriptome of their thigh adipose tissue and analyzed differentially expressed genes (DEGs) using weighted gene co-expression network analysis; further we identified perturbed pathways implicated by these DEGs in relevant co-expression modules. We also attempted to link these pathways with known aspects of T2D pathophysiology in terms of their association with some of their intermediate traits, namely; adipocyte size, HOMA-B, HOMA-R, Hb1Ac, insulin, glucose-level, TNF-α, IL-6, VLDLs, LDLs, HDLs, and NEFAs. It was observed that several modules of co-expressed genes show an association with diabetes and some of its intermediate phenotypic traits mentioned above. Therefore, these findings suggest a role of peripheral subcutaneous adipose tissue in the pathophsiology of T2D in Asian Indians. Additionally, our study indicated that the peripheral subcutaneous adipose tissue in diabetics shows pathologic changes characterized by adipocyte hypertrophy and up-regulation of inflammation-related pathways.
Coronavirus disease 2019 (COVID-19) is caused by a Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus. The SARS-CoV-2 genome and its association to SAR-CoV-1 vary from ca. 66 to 96% depending on the type of betacoronavirideae family members. With several drugs, viz. chloroquine, hydroxychloroquine, ivermectin, artemisinin, remdesivir, azithromycin considered for clinical trials, there has been an inherent need to find distinctive antiviral mechanisms of these drugs. Curcumin, a natural bioactive molecule has been shown to have therapeutic potential for various diseases, and its effect on COVID-19 is also currently being explored. In this study, we show the binding potential of curcumin targeted to a variety of SARS-CoV-2 proteins, viz. spike glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), spike protein-ACE2 (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase (PDB ID: 6M71) structures. Furthermore, representative docking complexes were validated using molecular dynamics simulations and mechanistic studies at 100 ns was carried on nucleocapsid and nsp10 proteins with curcumin complexes which resulted in stable and efficient binding energies and correlated with that of docked binding energies of the complexes. Both the docking and simulation studies indicate that curcumin has the potential as an antiviral against COVID-19.
Corona virus disease 2019 (COVID-19) is caused by a Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), which is a positive strand RNA virus. The SARS-CoV-2 genome and its association to SAR-CoV-1 vary from ca. 66% to 96% depending on the type of betacoronavirdeae family members. With several drugs, viz. chloroquine, hydroxychloroquine, ivermectin, artemisinin, remdesivir, azithromycin considered for clinical trials, there has been an inherent need to find distinctive antiviral mechanisms of these drugs. Curcumin, a natural bioactive molecule has been shown to have a therapeutic potential for various diseases, but its effect on COVID-19 has not been explored. In this study, we show the binding potential of curcumin targeted to a variety of SARS-CoV-2 proteins, viz. spike glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase (PDB ID: 6M71) structures. Our results indicate that curcumin has high binding affinity towards nucleocapsid and nsp 10 proteins with potential antiviral activity.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a respiratory syndrome caused by positive RNA virus resulting in outbreak of corona virus disease 2019 (COVID-19). The SARS-CoV-2 genome and its association to SAR-CoV-1 vary from ca. 66% to 96% depending on the type of betacoronavirdeae family members. With several drugs, viz. chloroquine, hydroxychloroquine, ivermectin, quinidine, artemisinin, remdesivir, azithromycin considered for clinical trials, there has been an inherent need to find distinctive antiviral mechanisms of these drugs. On the other hand, curcumin, a natural bioactive molecule has been shown to have a therapeutic potential for various diseases, but no role of it in COVID-19 has been explored. In this work, we show the binding potential of curcumin targeted to a host of SARS-CoV-2 proteins, viz. spike glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase (PDB ID: 6M71) structures. Our results indicate that curcumin has potential antiviral protein binding affinity towards SARS-CoV-2 proteins which is comparable with other repurposed drugs that are considered for clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.