Nine districts in West Bengal, India, and 42 districts in Bangladesh have arsenic levels in groundwater above the World Health Organization maximum permissible limit of 50 microg/L. The area and population of the 42 districts in Bangladesh and the 9 districts in West Bengal are 92,106 km(2) and 79.9 million and 38,865 km(2) and 42.7 million, respectively. In our preliminary study, we have identified 985 arsenic-affected villages in 69 police stations/blocks of nine arsenic-affected districts in West Bengal. In Bangladesh, we have identified 492 affected villages in 141 police stations/blocks of 42 affected districts. To date, we have collected 10,991 water samples from 42 arsenic-affected districts in Bangladesh for analysis, 58,166 water samples from nine arsenic-affected districts in West Bengal. Of the water samples that we analyzed, 59 and 34%, respectively, contained arsenic levels above 50 microg/L. Thousands of hair, nail, and urine samples from people living in arsenic-affected villages have been analyzed to date; Bangladesh and West Bengal, 93 and 77% samples, on an average, contained arsenic above the normal/toxic level. We surveyed 27 of 42 districts in Bangladesh for arsenic patients; we identified patients with arsenical skin lesions in 25 districts. In West Bengal, we identified patients with lesions in seven of nine districts. We examined people from the affected villages at random for arsenical dermatologic features (11,180 and 29,035 from Bangladesh and West Bengal, respectively); 24.47 and 15.02% of those examined, respectively, had skin lesions. After 10 years of study in West Bengal and 5 in Bangladesh, we feel that we have seen only the tip of iceberg.ImagesFigure 1Figure 2Figure 3Figure 4
A speciation technique for arsenic has been developed using an anion-exchange high-performance liquid chromatography/inductively coupled argon plasma mass spectrometer (HPLC/ICP MS). Under optimized conditions, eight arsenic species [arsenocholine, arsenobetaine, dimethylarsinic acid (DMA(V)), dimethylarsinous acid (DMA(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), arsenite (As(III)), and arsenate (As(V))] can be separated with isocratic elution within 10 min. The detection limit of arsenic compounds was 0.14-0.33 microg/L. To validate the method, Standard Reference Material in freeze-dried urine, SRM-2670, containing both normal and elevated levels of arsenic was analyzed. The method was applied to determine arsenic species in urine samples from three arsenic-affected districts of West Bengal, India. Both DMA(III) and MMA(III) were detected directly (i.e., without any prechemical treatment) for the first time in the urine of some humans exposed to inorganic arsenic through their drinking water. Of 428 subjects, MMA(III) was found in 48% and DMA(III) in 72%. Our results indicate the following. (1) Since MMA(III) and DMA(III) are more toxic than inorganic arsenic, it is essential to re-evaluate the hypothesis that methylation is the detoxification pathway for inorganic arsenic. (2) Since MMA(V) reductase with glutathione (GSH) is responsible for conversion of MMA(V) to MMA(III) in vivo, is DMA(V) reductase with GSH responsible for conversion of DMA(V) to DMA(III) in vivo? (3) Since DMA(III) forms iron-dependent reactive oxygen species (ROS) which causes DNA damage in vivo, DMA(III) may be responsible for arsenic carcinogenesis in human.
Arsenic in ground water has been found above the maximum permissible limit in six districts of West Bengal covering an area of 34 000 km2 with a population of 30 million. At present 37 blocks of these six districts by the side of the River Ganga are affected and about 800 000 people from 312 villagedwards are drinking arsenic contaminated water and amongst them at least 175 000 people are showing arsenical skin lesions. The source of arsenic is geological. We have analysed thousands of tube-well water samples from these six districts for four arsenic species namely, arsenite, arsenate, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). We could detect no MMAA or DMAA in any of these samples. In urine, DMAA and MMAA are the predominant species along with arsenite and arsenate. The techniques we used for the determination and speciation of arsenic are: (i) separation of arsenite and arsenate from water by sodium diethyldithiocarbamate in chloroform followed by FI-HGAAS; (ii) spectrophotometry using Ag-DDTC in chloroform with hexamethylenetetramine as absorbing solution; (iiz) ion-exchange separation of arsenite and arsenate from water followed by FI-HGAAS; and (iv) for analysis of inorganic arsenic and its metabolites in urine, FI-HGAAS was used after separation of the species by a , I combined cation-anion-exchange column. Total arsenic, in urine was determined by FI-HGAAS after acid decomposition. The most toxic species, arsenite, is present in ground water at about 50% of the total arsenic level, and more than 90% of the total arsenic in urine is inorganic arsenic and its metabolites.
In six districts of West Bengal arsenic has been found in ground water above the maximum permissible limit recommended by the WHO of 0.05 mg l-1. This water is used by the villagers for drinking, cooking and other household purposes. These six districts have an area of 34,000 km2 and hold a population of 30 million. Over the last five years we have surveyed only a few small areas of these six affected districts and our survey revealed that, at present, at least 800,000 people from 312 villages in 37 blocks are drinking contaminated water and more than 175,000 people are showing arsenical skin lesions that are the late stages of manifestation of arsenic toxicity. Most of the three stages of arsenic-related clinical manifestations are observed amongst the affected people. The common symptoms are conjunctivitis, melanosis, depigmentation, keratosis and hyperkeratosis; cases of gangrene and malignant neoplasms are also observed. The source of arsenic is geological. We have analysed thousands of arsenic contaminated water samples. Most of the water samples contain a mixture of arsenite and arsenate and in none of them could we detect methylarsonic or dimethylarsenic acid. We have also analysed a large number of urine, hair and nail samples, several skin-scales and some liver tissues (biopsy samples) of the people drinking the arsenic contaminated water and showing arsenical skin lesions. Flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) was used for the analysis of hair, nails, urine and skin-scale after decomposition by various techniques. The liver tissues were analysed by Zeeman corrected-ETAAS using a few milligrams of the biopsy samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.