BackgroundTheileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.MethodsBlood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.ResultsWe applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST’ = 0.075, θ = 0.07) were detected when the data for T. annulata parasites in Oman was compared with that previously generated for Turkey and Tunisia.ConclusionGenetic analyses of T. annulata samples representing four geographical regions in Oman revealed a high level of genetic diversity in the parasite population. There was little evidence of genetic differentiation between parasites from different regions, and a high level of genetic diversity was maintained within each sub-population. These findings are consistent with a high parasite transmission rate and frequent movement of animals between different regions in Oman.
10 Background 11Theileriosis is one of the most prevalent infectious diseases of livestock in the Arabian 12 Peninsula, and causes high rates of mortality and morbidity in sheep and cattle.
Designing strategies for conservation and improvement livestock should be based on assessment of genetic characteristics of populations under consideration. In Oman, conservation programs for local livestock breeds have been started. The current study assessed the genetic diversity and conservation potential of local chickens from Oman. Twenty-nine microsatellite markers were analyzed in 158 birds from six agro-ecological zones: Batinah, Dhofar, North Hajar, East Hajar, Musandam, and East Coast. Overall, a total of 217 alleles were observed. Across populations, the average number of alleles per locus was 7.48 and ranged from 2 (MCW98 and MCW103) to 20 (LEI094). The mean expected heterozygosity (H E) was 0.62. Average fixation index among populations (F ST) was 0.034, indicating low population differentiation, while the mean global deficit of heterozygotes across populations (F IT) was 0.159. Based on Nei's genetic distance, a neighbor-joining tree was constructed for the populations, which clearly identified the Dhofar population as the most distant one of the Omani chicken populations. The analysis of conservation priorities identified Dhofar and Musandam populations as the ones that largely contribute to the maximal genetic diversity of the Omani chicken gene pool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.