Cloud computing has become a widely exploited research area in academia and industry. Cloud computing benefits both cloud services providers (CSPs) and consumers. The security challenges associated with cloud computing have been widely studied in the literature. This systematic literature review (SLR) is aimed to review the existing research studies on cloud computing security, threats, and challenges. This SLR examined the research studies published between 2010 and 2020 within the popular digital libraries. We selected 80 papers after a meticulous screening of published works to answer the proposed research questions. The outcomes of this SLR reported seven major security threats to cloud computing services. The results showed that data tampering and leakage were among the highly discussed topics in the chosen literature. Other identified security risks were associated with the data intrusion and data storage in the cloud computing environment. This SLR's results also indicated that consumers' data outsourcing remains a challenge for both CSPs and cloud users. Our survey paper identified the blockchain as a partnering technology to alleviate security concerns. The SLR findings reveal some suggestions to be carried out in future works to bring data confidentiality, data integrity, and availability.
Plant diseases can cause a considerable reduction in the quality and number of agricultural products. Guava, well known to be the tropics’ apple, is one significant fruit cultivated in tropical regions. It is attacked by 177 pathogens, including 167 fungal and others such as bacterial, algal, and nematodes. In addition, postharvest diseases may cause crucial production loss. Due to minor variations in various guava disease symptoms, an expert opinion is required for disease analysis. Improper diagnosis may cause economic losses to farmers’ improper use of pesticides. Automatic detection of diseases in plants once they emerge on the plants’ leaves and fruit is required to maintain high crop fields. In this paper, an artificial intelligence (AI) driven framework is presented to detect and classify the most common guava plant diseases. The proposed framework employs the ΔE color difference image segmentation to segregate the areas infected by the disease. Furthermore, color (RGB, HSV) histogram and textural (LBP) features are applied to extract rich, informative feature vectors. The combination of color and textural features are used to identify and attain similar outcomes compared to individual channels, while disease recognition is performed by employing advanced machine-learning classifiers (Fine KNN, Complex Tree, Boosted Tree, Bagged Tree, Cubic SVM). The proposed framework is evaluated on a high-resolution (18 MP) image dataset of guava leaves and fruit. The best recognition results were obtained by Bagged Tree classifier on a set of RGB, HSV, and LBP features (99% accuracy in recognizing four guava fruit diseases (Canker, Mummification, Dot, and Rust) against healthy fruit). The proposed framework may help the farmers to avoid possible production loss by taking early precautions.
Emerging technologies such as digital twins, blockchain, Internet of Things (IoT), and Artificial Intelligence (AI) play a vital role in driving the industrial revolution in all domains, including the healthcare sector. As a result of COVID-19 pandemic outbreak, there is a significant need for medical cyber-physical systems to adopt these emerging technologies to combat COVID-19 paramedic crisis. Also, acquiring secure real-time data exchange and analysis across multiple participants is essential to support the efforts against COVID-19. Therefore, we have introduced a blockchain-based collaborative digital twins framework for decentralized epidemic alerting to combat COVID-19 and any future pandemics. The framework has been proposed to bring together the existing advanced technologies (i.e., blockchain, digital twins, and AI) and then provide a solution to decentralize epidemic alerting to combat COVID-19 outbreaks. Also, we have described how the conceptual framework can be applied in the decentralized COVID-19 pandemic alerting use case.
A wireless sensor network is a large sensor hub with a confined power supply that performs limited calculations. Due to the degree of restricted correspondence and the large size of the sensor hub, packets sent through the sensor network are based primarily on multihop data transmission. Current wireless sensor networks are widely used in a range of applications, such as precision agriculture, healthcare, and smart cities. The network covers a wide domain and addresses multiple aspects in agriculture, such as soil moisture, temperature, and humidity. Therefore, issues of precision agriculture at the output of the network are analyzed using a star and mesh topology with TCP as the transmission protocol. The system is equipped with two sensors: Arduino DFRobot for soil moisture and DHT11 for relative temperature and humidity. The experiments are performed using the NS2 simulator, which provides an improved interface to analyze the results. The results showed that the proposed mechanism has good performance and output.
Nowaday, emails are used in almost every field, from business to education. Emails have two subcategories, i.e., ham and spam. Email spam, also called junk emails or unwanted emails, is a type of email that can be used to harm any user by wasting his/her time, computing resources, and stealing valuable information. The ratio of spam emails is increasing rapidly day by day. Spam detection and filtration are significant and enormous problems for email and IoT service providers nowadays. Among all the techniques developed for detecting and preventing spam, filtering email is one of the most essential and prominent approaches. Several machine learning and deep learning techniques have been used for this purpose, i.e., Naïve Bayes, decision trees, neural networks, and random forest. This paper surveys the machine learning techniques used for spam filtering techniques used in email and IoT platforms by classifying them into suitable categories. A comprehensive comparison of these techniques is also made based on accuracy, precision, recall, etc. In the end, comprehensive insights and future research directions are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.