Heat flow may be improved using a new form of nanofluid known as ternary hybrid nanofluid. Magnetic field, mass suction, and heat source effects on the stagnation area of [Formula: see text]) ternary hybrid nanofluid toward convectively heated stretching/shrinking cylinder with cylindrical shape nanoparticles are studied in this work. There will be an equation modeled under the given assumptions. It is feasible, with the help of similarity transformation, to convert nonlinear partial differential equations that are not quite solvable into ordinary differential equations that can be resolved numerically. The prevailing role of heat transfer and the features of movement of ternary hybrid nanofluids have been found to be significantly affected by the combination of Runge–Kutta-IV and the shotting technique in Mathematica. Many variables, including suction, Reynold number, nanoparticle volume fraction, magnetic field, Biot number, heat source, and stretching/shrinking influenced temperature, velocity, skin friction, and the local heat transfer rate, as shown in the graphs in the study. When magnetic field, suction, and Reynold number are present velocity increases, but inverse is true for nanoparticle volume fraction and stretching/shrinking parameter. The greatest influence on the surface is shown by the ternary hybrid nanofluid. Additionally, the heat transfer rate of the ternary hybrid nanofluid is faster than that of the hybrid and regular nanofluids.
The research of single and multi-wall carbon nanotubes (SWCNTs/MWCNTs) mixed in sodium alginate-based nanofluid with MHD stagnation-point flow on a convective heated stretching disk with viscous dissipation and suction effects is being done with the intention of decoding the heat and mass transmission mechanism. It is possible to transform PDEs that govern the boundary layer into ODEs. MATLAB’s Bvp5c is used to numerically solve the revised equations. The Yamada-Ota model and the Buongiorno model are used in this work to scrutinize the flow, heat, and mass transfer parameters. The following parameters were brought up for discussion: volume fraction nanoparticle, magnetic parameter, suction, Brownian motion, thermophoresis, Lewis number, Eckert number, Biot number, stretching, and thermophoresis. This study found that nanofluid (SWCNT/sodium alginate) has a superior flow, heat, and mass transfer rate than nanofluid (MWCNT/sodium alginate). Graphical representations of the effects of various factors are shown, and a comparison of current and prior findings is given in a table. A comparison of current and previous findings reveals a 0% relative inaccuracy. The velocity ratio parameter has solutions that look close to the separation value. The performance of heat and mass transfer operations may be improved by increasing suction parameters. Increases in Brownian motion [Formula: see text] and suction decrease the temperature profile, whereas increases in velocity ratio and magnetic parameters increase velocity. This research is critical for estimating flow, temperature, and concentration behavior for CNTs with incorporated physical properties.
The progress in new inventions in the modern technological world demands outstanding heat transport. Unfortunately, common solvents are unable to produce such desired amount of heat which compelled the scientists and researchers towards the development of new heat transfer fluids (Nanofluids). Therefore, the study of C8H[Formula: see text] with hybridization of [(MnZnFe2O4–NiZnFe2O[Formula: see text]][Formula: see text] under novel effects of thermal radiations and convective heat conditions over a slippery permeable surface is organized. The modified thermophysical correlations for hybrid nanofluids were used and successfully achieved the modified heat transfer model. After numerical investigation, the results were plotted under varying parameters and provided for comprehensive discussion. The results revealed faster fluid motion and [Formula: see text] is dominant. The velocities drop significantly due to the permeability of the surface. Further, thermal radiations potentially boost heat transfer by providing extra energy to fluid particles. The temperature coefficient [Formula: see text] due to nonlinear thermal radiations also indicated faster heat transport.
The machinability of materials is highly affected by their hardness, and it affects power consumption, cutting tool life as well as surface quality while machining the component. This work deals with machining of annealed AISI 4340 alloy steel using a coated carbide tool under a dry environment. The microhardness of annealed and non-annealed workpieces was compared and a significant reduction was found in the microhardness of annealed samples. Microstructure examination of the annealed sample revealed the formation of coarse pearlite which indicated a reduction of hardness and improved ductility. A commercially CVD multilayer (TiN/TiCN/Al2O3/ZrCN) coated cemented carbide cutting tool was employed for turning quenched and tempered structural AISI 4340 alloy steel by varying machining speed, rate of feed, and depth of cut to evaluate the surface quality, machining forces, flank wear, and chip morphology. According to the findings of experiments, the feed rate possesses a high impact on surface finish, followed by cutting speed. The prominent shape of the serrated saw tooth chip was noticed at a higher cutting speed. Machined surface finish and cutting forces during turning is a function of the wear profile of the coated carbide insert. This study proves that annealing is a low-cost and economical process to enhance the machinability of alloy steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.