Brain tumor segmentation from MRIs has always been a challenging task for radiologists, therefore, an automatic and generalized system to address this task is needed. Among all other deep learning techniques used in medical imaging, U-Net-based variants are the most used models found in the literature to segment medical images with respect to different modalities. Therefore, the goal of this paper is to examine the numerous advancements and innovations in the U-Net architecture, as well as recent trends, with the aim of highlighting the ongoing potential of U-Net being used to better the performance of brain tumor segmentation. Furthermore, we provide a quantitative comparison of different U-Net architectures to highlight the performance and the evolution of this network from an optimization perspective. In addition to that, we have experimented with four U-Net architectures (3D U-Net, Attention U-Net, R2 Attention U-Net, and modified 3D U-Net) on the BraTS 2020 dataset for brain tumor segmentation to provide a better overview of this architecture’s performance in terms of Dice score and Hausdorff distance 95%. Finally, we analyze the limitations and challenges of medical image analysis to provide a critical discussion about the importance of developing new architectures in terms of optimization.
The aedes mosquito-borne dengue viruses cause dengue fever, an arboviral disease (DENVs). In 2019, the World Health Organization forecasts a yearly occurrence of infections from 100 million to 400 million, the maximum number of dengue cases ever testified worldwide, prompting WHO to label the virus one of the world’s top ten public health risks. Dengue hemorrhagic fever can progress into dengue shock syndrome, which can be fatal. Dengue hemorrhagic fever can also advance into dengue shock syndrome. To provide accessible and timely supportive care and therapy, it is necessary to have indispensable practical instruments that accurately differentiate Dengue and its subcategories in the early stages of illness development. Dengue fever can be predicted in advance, saving one’s life by warning them to seek proper diagnosis and treatment. Predicting infectious diseases such as dengue is difficult, and most forecast systems are still in their primary stages. In developing dengue predictive models, data from microarrays and RNA-Seq have been used significantly. Bayesian inferences and support vector machine algorithms are two examples of statistical methods that can mine opinions and analyze sentiment from text. In general, these methods are not very strong semantically, and they only work effectively when the text passage inputs are at the level of the page or the paragraph; they are poor miners of sentiment at the level of the sentence or the phrase. In this research, we propose to construct a machine learning method to forecast dengue fever.
Soft sensors are data-driven devices that allow for estimates of quantities that are either impossible to measure or prohibitively expensive to do so. DL (deep learning) is a relatively new feature representation method for data with complex structures that has a lot of promise for soft sensing of industrial processes. One of the most important aspects of building accurate soft sensors is feature representation. This research proposed novel technique in automation of manufacturing industry where dynamic soft sensors are used in feature representation and classification of the data. Here the input will be data collected from virtual sensors and their automation-based historical data. This data has been pre-processed to recognize the missing value and usual problems like hardware failures, communication errors, incorrect readings, and process working conditions. After this process, feature representation has been done using fuzzy logic-based stacked data-driven auto-encoder (FL_SDDAE). Using the fuzzy rules, the features of input data have been identified with general automation problems. Then, for this represented features, classification process has been carried out using least square error backpropagation neural network (LSEBPNN) in which the mean square error while classification will be minimized with loss function of the data. The experimental results have been carried out for various datasets in automation of manufacturing industry in terms of computational time of 34%, QoS of 64%, RMSE of 41%, MAE of 35%, prediction performance of 94%, and measurement accuracy of 85% by proposed technique.
Politeness is an essential part of a conversation. Like verbal communication, politeness in textual conversation and social media posts is also stimulating. Therefore, the automatic detection of politeness is a significant and relevant problem. The existing literature generally employs classical machine learning-based models like naive Bayes and Support Vector-based trained models for politeness prediction. This paper exploits the state-of-the-art (SOTA) transformer architecture and transfer learning for respectability prediction. The proposed model employs the strengths of context-incorporating large language models, a feed-forward neural network, and an attention mechanism for representation learning of natural language requests. The trained representation is further classified using a softmax function into polite, impolite, and neutral classes. We evaluate the presented model employing two SOTA pre-trained large language models on two benchmark datasets. Our model outperformed the two SOTA and six baseline models, including two domain-specific transformer-based models using both the BERT and RoBERTa language models. The ablation investigation shows that the exclusion of the feed-forward layer displays the highest impact on the presented model. The analysis reveals the batch size and optimization algorithms as effective parameters affecting the model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.