Tobacco, one of the most significant nonfood crops, is critical to agriculture worldwide. The tobacco processing business creates a significant amount of hazardous tobacco waste containing nicotine, and only a tiny portion of it gets recycled. Nicotine, the primary component of tobacco products such as cigarettes, is an alkaloid and can be used as an insecticide. This research aims to extract nicotine from discarded cigarette butts and utilize it as an insecticide. Extraction, emulsification, and efficiency testing on cabbage aphids are all part of the procedure. The initial extraction tests used a solvent combination of ethanol and methanol in various ratios, with a 3 : 1 ratio yielding the best results. Temperature (30–60°C), extraction length (4–6 hrs), and sodium hydroxide concentration (1–3 M) are the independent variables studied for extraction parameters, and the optimal conditions are determined using Design-Expert, response surface approach central composite design (RSM-CCD). In addition, artificial neural network (ANN) studies with MATLAB were used to accurately forecast extraction yield. The extracted product was evaluated using a gas chromatography–mass spectrometry (GC-MS) and a UV/visible spectrophotometer. The ideal crude extract yield and nicotine content were 17.75 and 3.26%, respectively, at the optimal conditions of temperature 60°C, time 4 hrs, and NaOH concentration 2.83 M with desirability of 0.832. The nicotine extracted was emulsified by combining the crude extract with a combination of palm oil and surfactants. Density, viscosity, pH, flash point, and surface tension of the emulsified concentration were measured and reported as 1.01 ± 0.01 g/ml, 585.33 ± 2.52 mPa s, 9.37 ± 0.03, 87.96 C, and 34.10 mN/m, respectively. On the cabbage aphid, the emulsified concentrated extract performed best at a ratio of 1 : 100 (emulsified concentrated to solvent).
The rapid advancement of technical advancements has resulted in the generation of substantial amount of electronic trash (e-waste). The volume of e-waste created, as well as the presence of both dangerous and beneficial elements, enhances the business potential of recovery and recycling significantly. Waste printed circuit boards (PCBs) include a number of hazardous heavy metals, including copper (Cu), tin (Sn), lead (Pb), and others (Zn, Ni, Fe, Br, Mn, Mg etc.). These discarded metals without treatment threaten the economy, the environment, and human health. Heavy metal recovery from PCBs is a big difficulty for researchers. The present review focuses on technological advances in the recovery of toxic, precious metals from PCBs.
The drinking water quality was evaluated in order to provide a continuous supply of clean and safe drinking water for the preservation of public health. The study area consists of three villages: Tulube, Seddo, and Serdo, all of which are located near Mettu town, which is about 550 kilometers south-west of Ethiopia’s capital, Addis Ababa. The physical and chemical parameters of the collected drinking water samples were assessed, including pH, turbidity, conductivity, total suspended solids (TSS), total dissolved solids (TDS), and the presence of heavy metals. The samples were examined in the laboratory, and the findings were compared to the World Health Organization (WHO) standards. Almost all of the physiochemical indicators were safe and within the permissible limit for drinking water quality. However, lead ion concentrations were found to be above the WHO standards. An adsorbent produced from banana pseudostems was used to remove lead ions from drinking water. The equilibrium parameters were determined using the Langmuir adsorption isotherm. The drinking water was treated for 4 h in a homemade adsorption column composed of filter medium (sand, charcoal, and powder of treated banana pseudostem). The data revealed that lead ions removal was nearly 70%, but still above the WHO standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.