Stress induces long-lasting changes in neuronal gene expression and cholinergic neurotransmission, but the underlying mechanism(s) are incompletely understood. Here, we report that chromatin structure and histone modifications are causally involved in this transcriptional memory. Specifically, the AChE gene encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase is known to undergo long-lasting transcriptional and alternative splicing changes after stress. In mice subjected to stress, we identified two alternative 5′ exons that were down-regulated after stress in the hippocampus, accompanied by reduced acetylation and elevated trimethylation of H3K9 at the corresponding promoter. These effects were reversed completely by daily administration of the histone deacetylase (HDAC) inhibitor sodium butyrate for 1 wk after stress. H3K9 hypoacetylation was associated with a selective, sodium butyrate-reversible promoter accumulation of HDAC4. Hippocampal suppression of HDAC4 in vivo completely abolished the long-lasting AChE-related and behavioral stress effects. Our findings demonstrate long-lasting stress-inducible changes in AChE's promoter choices, identify the chromatin changes that support this long-term transcriptional memory, and reveal HDAC4 as a mediator of these effects in the hippocampus.HDAC inhibitors | ChIP | chromatin immunoprecipitation | histone methylation | histone acetylation
Background: Embryonic stem cell (ESC) chromatin is characterized by a unique set of histone modifications, including enrichment for H3K9ac. Recent studies suggest that HDAC inhibitors (HDACi) promote pluripotency. Results: Using H3K9ac ChIP-seq analyses and gene expression in E14 mouse ESCs before and after treatment with a low level of the HDACi valproic acid (VPA), we show that H3K9ac is enriched at gene promoters and is highly correlated with gene expression and with various genomic features, including different active histone marks and pluripotency-related transcription factors. Conclusion:This study provides insights into the genomic response of ESCs to low level HDACi, which leads to increased pluripotency. The results suggest that a mild (averaging less than 40%) but global change in the chromatin state is involved in increased pluripotency and that specific mechanisms operate selectively in bivalent genes to maintain constant H3K9ac levels. Our data support the notion that H3K9ac has an important role in ESC biology. Significance: Understanding the mechanisms that improve and support pluripotency of ESCs, such as the use of the HDAC inhibitor VPA, will promote intelligent manipulation of ESCs and expedite their use in the clinic.
The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.
Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals. Hence, mtDNA transcriptional regulation is more complex than once thought. Here, by analyzing ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified strong binding sites of three bona fide nuclear TFs (c-Jun, Jun-D, and CEBPb) within human mtDNA protein-coding genes. We validated the binding of two TFs by ChIP-quantitative polymerase chain reaction (c-Jun and Jun-D) and showed their mitochondrial localization by electron microscopy and subcellular fractionation. As a step toward investigating the functionality of these TF-binding sites (TFBS), we assessed signatures of selection. By analyzing 9,868 human mtDNA sequences encompassing all major global populations, we recorded genetic variants in tips and nodes of mtDNA phylogeny within the TFBS. We next calculated the effects of variants on binding motif prediction scores. Finally, the mtDNA variation pattern in predicted TFBS, occurring within ChIP-seq negative-binding sites, was compared with ChIP-seq positive-TFBS (CPR). Motifs within CPRs of c-Jun, Jun-D, and CEBPb harbored either only tip variants or their nodal variants retained high motif prediction scores. This reflects negative selection within mtDNA CPRs, thus supporting their functionality. Hence, human mtDNA-coding sequences may have dual roles, namely coding for genes yet possibly also possessing regulatory potential.
BackgroundPluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown.ResultsHere we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters.ConclusionsWe demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.