Stress induces long-lasting changes in neuronal gene expression and cholinergic neurotransmission, but the underlying mechanism(s) are incompletely understood. Here, we report that chromatin structure and histone modifications are causally involved in this transcriptional memory. Specifically, the AChE gene encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase is known to undergo long-lasting transcriptional and alternative splicing changes after stress. In mice subjected to stress, we identified two alternative 5′ exons that were down-regulated after stress in the hippocampus, accompanied by reduced acetylation and elevated trimethylation of H3K9 at the corresponding promoter. These effects were reversed completely by daily administration of the histone deacetylase (HDAC) inhibitor sodium butyrate for 1 wk after stress. H3K9 hypoacetylation was associated with a selective, sodium butyrate-reversible promoter accumulation of HDAC4. Hippocampal suppression of HDAC4 in vivo completely abolished the long-lasting AChE-related and behavioral stress effects. Our findings demonstrate long-lasting stress-inducible changes in AChE's promoter choices, identify the chromatin changes that support this long-term transcriptional memory, and reveal HDAC4 as a mediator of these effects in the hippocampus.HDAC inhibitors | ChIP | chromatin immunoprecipitation | histone methylation | histone acetylation
Polyglutamine (PolyQ)-related diseases are dominant late-onset genetic disorders that are manifested by progressive neurodegeneration, leading to behavioral and physical impairments. An increased body of evidence suggests that chromatin structure and epigenetic regulation are involved in disease pathology. PolyQ diseases often display an aberrant transcriptional regulation due to the disrupted function of histone-modifying complexes and altered interactions of the polyQ-extended proteins with chromatin-related factors. In this review we describe recent findings relating to the role of chromatin in polyQ diseases. We discuss the involvement of epigenetic-related factors and chromatin structure in genomic instability of CAG repeats; we describe changes in the expression and regulation of chromatin-related enzymes and in the levels and patterns of histone modifications in disease state; we illustrate the potential beneficial effects of different histone deacetylase (HDAC) inhibitors for the treatment of polyQ diseases, and we end by describing the potential use of human pluripotent stem cells and their differentiated derivatives for modeling polyQ diseases in vitro. Taken together, these accumulating studies strongly suggest that disrupted chromatin regulation may be directly involved with the pathophysiology of polyQ-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.