CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
Antibodies against CD47, which block tumor cell CD47 interactions with macrophage signal regulatory protein-α, have been shown to decrease tumor size in hematological and epithelial tumor models by interfering with the protection from phagocytosis by macrophages that intact CD47 bestows upon tumor cells. Leiomyosarcoma (LMS) is a tumor of smooth muscle that can express varying levels of colony-stimulating factor-1 (CSF1), the expression of which correlates with the numbers of tumor-associated macrophages (TAMs) that are found in these tumors. We have previously shown that the presence of TAMs in LMS is associated with poor clinical outcome and the overall effect of TAMs in LMS therefore appears to be protumorigenic. However, the use of inhibitory antibodies against CD47 offers an opportunity to turn TAMs against LMS cells by allowing the phagocytic behavior of resident macrophages to predominate. Here we show that interference with CD47 increases phagocytosis of two human LMS cell lines, LMS04 and LMS05, in vitro. In addition, treatment of mice bearing subcutaneous LMS04 and LMS05 tumors with a novel, humanized anti-CD47 antibody resulted in significant reductions in tumor size. Mice bearing LMS04 tumors develop large numbers of lymph node and lung metastases. In a unique model for neoadjuvant treatment, mice were treated with anti-CD47 antibody starting 1 wk before resection of established primary tumors and subsequently showed a striking decrease in the size and number of metastases. These data suggest that treatment with anti-CD47 antibodies not only reduces primary tumor size but can also be used to inhibit the development of, or to eliminate, metastatic disease.L eiomyosarcoma (LMS) is a neoplasm of smooth muscle cells that can arise in the uterus or in soft tissue throughout the body. Currently, there exist limited therapeutic options for patients diagnosed with LMS, and the lack of actionable prognostic markers and a limited understanding of the biological mechanisms underlying LMS complicate the clinical management of these tumors (1). The rate of metastatic relapse for these tumors following local treatment is ∼40% at 5 y, leading to, in most cases, an incurable condition (2, 3).Macrophages are monocyte-derived phagocytic cells that play crucial roles in adaptive and innate immunity. Tumor-associated macrophages (TAMs) also play important roles in tumor behavior, depending on their polarization. M1, or "classically activated" TAMs, can mediate anticancer effects by eliciting antitumor-adaptive immunity mechanisms that include phagocytosis. In contrast, M2, or "alternatively activated" TAMs, suppress adaptive immunity and promote a tumor microenvironment (TME) that can augment cancer progression. In many types of carcinomas, TAMs function as promoters of cancer progression, presumably via their ability to mediate tumor angiogenesis, increase extracellular matrix breakdown, aid in tumor invasion, and augment the capacity of tumor cells to form distant metastases (4-6). The TME's role as a nonneoplastic co...
Purpose: Macrophages play an important role in breast carcinogenesis. The pathways that mediate the macrophage contribution to breast cancer and the heterogeneity that exists within macrophages are incompletely understood. Macrophage colony-stimulating factor 1 (CSF1) is the primary regulator of tissue macrophages. The purpose of this study was to define a novel CSF1response signature and to evaluate its clinical and biological significance in breast cancer. Experimental Design: We defined the CSF1 response signature by identifying genes overexpressed in tenosynovial giant cell tumor and pigmented villonodular synovitis (tumors composed predominantly of macrophages recruited in response to the overexpression of CSF1) compared with desmoid-type fibromatosis and solitary fibrous tumor. To characterize the CSF1 response signature in breast cancer, we analyzed the expression of CSF1 response signature genes in eight published breast cancer gene expression data sets (n = 982) and did immunohistochemistry and in situ hybridization for CSF1response genes on a breast cancer tissue microarray (n = 283). Results: In both the gene microarray and tissue microarray analyses, a consistent subset (17-25%) of breast cancers shows the CSF1response signature. The signature is associated with higher tumor grade, decreased expression of estrogen receptor, decreased expression of progesterone receptor, and increased TP53 mutations (P < 0.001).Conclusions: Our data show that the CSF1 response signature is consistently seen in a subset of breast carcinomas and correlates with biological features of the tumor. Our findings provide insight into macrophage biology and may facilitate the development of personalized therapy for patients most likely to benefit from CSF1-targeted treatments.
BackgroundMolecular characterization of tumors has been critical for identifying important genes in cancer biology and for improving tumor classification and diagnosis. Long non-coding RNAs, as a new, relatively unstudied class of transcripts, provide a rich opportunity to identify both functional drivers and cancer-type-specific biomarkers. However, despite the potential importance of long non-coding RNAs to the cancer field, no comprehensive survey of long non-coding RNA expression across various cancers has been reported.ResultsWe performed a sequencing-based transcriptional survey of both known long non-coding RNAs and novel intergenic transcripts across a panel of 64 archival tumor samples comprising 17 diagnostic subtypes of adenocarcinomas, squamous cell carcinomas and sarcomas. We identified hundreds of transcripts from among the known 1,065 long non-coding RNAs surveyed that showed variability in transcript levels between the tumor types and are therefore potential biomarker candidates. We discovered 1,071 novel intergenic transcribed regions and demonstrate that these show similar patterns of variability between tumor types. We found that many of these differentially expressed cancer transcripts are also expressed in normal tissues. One such novel transcript specifically expressed in breast tissue was further evaluated using RNA in situ hybridization on a panel of breast tumors. It was shown to correlate with low tumor grade and estrogen receptor expression, thereby representing a potentially important new breast cancer biomarker.ConclusionsThis study provides the first large survey of long non-coding RNA expression within a panel of solid cancers and also identifies a number of novel transcribed regions differentially expressed across distinct cancer types that represent candidate biomarkers for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.