Genistein is the natural isoflavone and a phytoestrogen with a broad range of pharmacological properties, such as tyrosine and topoisomerase inhibition. It also induces apoptosis and cell proliferation inhibition, differentiates cancer cells. Added health benefits include the reduction of osteoporosis by suppressing osteoclasts and lymphocyte functions, decreased the risk of cardiovascular attacks and relieved postmenopausal problems. Genistein traditionally used in Chinese and Ayurvedic medicine and are found to be associated with lower risk of breast, prostate and lung cancer. Numerous factors comprising genetic, epigenetic and transcriptomic alterations are evidenced to be responsible for breast, prostate and lung cancer. In present review, an overview on genistein, the various analytical methods and drug delivery approaches to determine genistein in the formulations are discussed. It may help to develop novel formulations with better solubility and bioavailability of genistein. The tumor cell scan may be targeted to form a stable genistein formulation.
Metformin (MTF) improves hyperglycemia primarily by suppressing glucose production by the liver. The objective of our investigation was to evaluate nanoemulsion as a promising carrier for MTF for sustained hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion, which finally improved biopharmaceutical properties achieved when compared with lipid based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% v/v of oil from the o/w nanoemulsion region of phase diagrams, and then thermodynamic stability and dispersibility tests were performed. The composition of optimized formulation was hydrogenated castor oil (5% v/v), 30% v/v of surfactant (tween 80), co-surfactant (transcutol) and distilled water (65% v/v) as an aqueous phase. The preparation showed maximum drug release (98.70%), optimal globule size (92.25 nm), lowest polydispersity value (0.172), lesser viscosity (22.124 cps) and infinite dilution capability. The antidiabetic activity of optimized MTF nanoemulsion formulation evaluated by blood glucose estimation showed significant hypoglycemic effect which was comparable to that observed with conventional marketed formulation in experimental diabetic rats. Optimized formulation was subjected to stability studies at different temperature and relative humidity and was found to be stable. No significant variations were observed in the formulation over a period of 3 months at accelerated storage conditions.
Many traditional systems of medicines employ herbal drugs for the hepatoprotection. Aim of the study was designed to evaluate the hepatoprotective potential of ‘ethanolic extract of Aquilaria agallocha (沉 香Chen Xiang) leaves' (AAE) against paracetamol (PCM) induced hepatotoxicity in SD rats. Group I animals were treated with 1% CMC for 8 days. Group II, III, IV and V animals were first treated with ‘1% CMC’ 1 ml/kg/day, AAE 200 mg/kg/day, AAE 400 mg/kg/day and silymarin 100 mg/kg/day respectively for 7 days and then, orally administered with PCM 3 g/kg b. wt. on 8th day in a single dose. 24 h after the last dosing by PCM, the blood was obtained through the retro-orbital plexus under light anesthesia and the animals were sacrificed. Hepatoprotective potential was assessed by various biochemical parameters such as ALT, AST, ALP, LDH, bilirubin, cholesterol, TP and ALB. Group IV rats showed significant (p < 0.01) decrease in ALT, AST, ALP, LDH, cholesterol, bilirubin, liver wt. and relative liver wt. levels while significant (p < 0.01) increase in final b. wt., TP and ALB levels as compared to group II rats. Hepatoprotective potential of AAE 400 mg/kg/day was comparable to that of standard drug silymarin 100 mg/kg/day. Results of the study were well supported by the histopathological observations. This study confirms that AAE possesses hepatoprotective potential comparable to that of standard drug silymarin as it exhibited comparable protective potential against PCM induced hepatotoxicity in SD rats.
Prostate cancer is the second most common malignancy in the human reproductive system. Eupalitin is one of the O-methylated flavonol-exhibited enhanced cancer chemopreventive agents. The current study highlights the structural determination of eupalitin and aims to explore the antitumor activity of eupalitin in human prostate cancer cell (PC3) and its underlying mechanism. Eupalitin structure was determined by using FTIR, (1)H NMR, and (13)C NMR. PC3 cells were treated with increasing concentrations of eupalitin, followed by analysis of the cell viability with an MTT assay. The results demonstrated that eupalitin markedly inhibited the proliferation of PC3 cells in a concentration-dependent manner. The results from fluorescent microscopic analysis of nuclear condensation and intracellular ROS generation determined that eupalitin significantly induced ROS level lead to nuclear apoptosis. Cell cycle analysis revealed that eupalitin-induced cell cycle progression as a percentage of cells in G0/G1 phase decreased whereas S phase increased. Caspase-3 immunofluorescence analysis confirms the efficacy of eupalitin-inducing apoptotic pathway and cell death. Thus, our study is helpful in understanding the mechanism underlying these effects in prostate cancer and it may provide novel molecular targets for prostate cancer therapy.
Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic b-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.