We investigated the effects of Andrographis paniculata (AP) extracts and andrographolide on the catalytic activity of three human cDNA-expressed cytochrome P450 enzymes: CYP2C9, CYP2D6 and CYP3A4. In vitro probe-based high performance liquid chromatography assays were developed to determine CYP2C9-dependent tolbutamide methylhydroxylation, CYP2D6-dependent dextromethorphan O-demethylation and CYP3A4-dependent testosterone 6β-hydroxylation activities in the presence and absence of AP extracts and andrographolide. Our results indicate that AP ethanol and methanol extracts inhibited CYP activities more potently than aqueous and hexane extracts across the three isoforms. Potent inhibitory effects were observed on CYP3A4 and CYP2C9 activities (K (i) values below 20 μg/ml). Andrographolide was found to exclusively but weakly inhibit CYP3A4 activity. In conclusion, data presented in this study suggest that AP extracts have the potential to inhibit CYP isoforms in vitro. There was, however, variation in the potency of inhibition depending on the extracts and the isoforms investigated.
This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori(+) vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, K(m) and V(max) values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.